
ZEST PROTOCOL SECURITY REVIEW

Conducted by:
KRISTIAN APOSTOLOV

MAY 2ND, 2024

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

2

Clarity Alliance is a team of expert whitehat hackers specialising in
securing protocols on Stacks.

They have disclosed vulnerabilities that have saved millions in
live TVL and conducted thorough reviews for some of the largest
projects across the Stacks Ecosystem.

Learn more about Clarity Alliance at clarityalliance.org.

1. About Clarity Alliance

http://clarityalliance.org

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

3

This report is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. This report is not, nor
should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts
Clarity Alliance to perform a security assessment.

This report does not provide any warranty or guarantee regarding
the absolute bug-free nature of the technology analyzed, nor do
they provide any indication of the technologies proprietors, business,
business model or legal compliance.

This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report
in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive
assessing process intending to help our customers increase the
quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level
of ongoing risk. Clarity Alliance’s position is that each company and
individual are responsible for their own due diligence and continuous
security. Clarity Alliance’s goal is to help reduce the attack vectors and
the high level of variance associated with utilizing new and consistently
changing technologies, and in no way claims any guarantee of security
or functionality of the technology we agree
to analyze.

The assessment services provided by Clarity Alliance are subject to
dependencies and under continuing development. You agree that your
access and/or use, including but not limited to any services, reports,
and materials, will be at your sole risk on an as-is, where-is, and as-
available basis.

Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. The assessment reports
could include false positives, false negatives, and other unpredictable
results. The services may access, and depend upon, multiple layers of
third parties. Notice that smart contracts deployed on the blockchain
are not resistant from internal/external exploit. Notice that active
smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Clarity Alliance does
not guarantee the explicit security of the audited smart contract,
regardless of the verdict.

2. Disclaimer

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

4

3. Introduction

5. Risk Classification

5.1 Impact

A time-boxed security review of Zest Protocol, where Clarity Alliance
reviewed the scope, whilst simultaneously building out a testing
suite for the protocol.

4. About Zest Protocol
Zest Protocol is a decentralized lending platform on Stacks that
enables users to trustlessly lend and borrow assets.

•	 High - leads to a significant material loss of assets in the
protocol or significantly harms a group of users.

•	 Medium - only a small amount of funds can be lost (such as
leakage of value) or a core functionality of the protocol is
affected.

•	 Low - can lead to any kind of unexpected behavior with some
of the protocol’s functionalities that’s not so critical.

Severity

Likelihood: High

Likelihood: Medium

Impact: High

Critical

High

Impact: Medium

High

Medium

Impact: Low

Medium

Low

Likelihood: Low Medium Low Low

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

5

5.2 Likelihood

5.3 Action required for severity levels

6. Security Assessment Summary

•	 High - attack path is possible with reasonable assumptions
that mimic on-chain conditions, and the cost of the attack is
relatively low compared to the amount of funds that can be
stolen or lost.

•	 Medium - only a conditionally incentivized attack vector, but
still relatively likely.

•	 Low - has too many or too unlikely assumptions or requires a
significant stake by the attacker with little or no incentive.

•	 Critical - Must fix as soon as possible (if already deployed)
•	 High - Must fix (before deployment if not already deployed)
•	 Medium - Should fix
•	 Low - Could fix

Review Commit Hash:
523c546ea944a2bcca4e038123df1086c6b9f02a

https://github.com/Zest-Protocol/zest-contracts/commit/523c546ea944a2bcca4e038123df1086c6b9f02a

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

6

7. Executive Summary
Over the course of the security review, Kristian Apostolov engaged
with Zest Protocol to review Zest Protocol. In this period of time a
total of 12 issues were uncovered.

Protocol Summary

Findings Count

Protocol Name

Severity

Total Findings 12

Amount

Repository

Date

Protocol Type

https://github.com/Zest-Protocol/zest-contracts

Zest Protocol

May 2nd, 2024

Lending Protocol

High 5

Medium 3

Low 3

QA 1

https://github.com/Zest-Protocol/zest-contracts

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

7

Summary of Findings

ID

[H-01]

[H-02]

[H-03]

[M-01]

[M-02]

[M-03]

[L-02]

[L-03]

[L-01]

[H-04]

get-reserve-available-liquidity
underflows on accrued-to-treasury >
ft-balance

Not calling cumulate-balance before
minting to collection address

Conditional liquidation bonus
miscomputation

get-stx-per-ststx can be manipulated

Not calling cumulate-balance for
repaid asset leads to lower leveraged
returns

Calling cumulate-balance after
updating interest rates in supply
causes causes lower asset returns

flashloan not lending out accrued-to-
treasury amount

Cannot liquidate yourself and receive
receipt tokens

Use get-price decimals with to-fixed
instead of magic numbers

Not checking last-block for staleness

Interest rate calculations will break
core functionality after Nakamoto
hardfork

Resolved

Resolved

Resolved

Acknowledged

Acknowledged

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Title Severity Status

High

High

High

High

Medium

Medium

Medium

Low

Low

Low

[QA-01] QA

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

8

Since				 is a receipt token amount transferred
to the protocol’s collection address via		 , the
conidtion
must hold to prevent underflow errors. However, during the
process, 			 is incremented before the repayment
amount is sent to the reserve, potentially violating this condition and
causing a transaction to revert with an underflow error.

A PoC demonstrating how this state can be reached is available here.

The					 function calculates the
current liquid reserve of a given token minus the treasury allocation
amount, which is the protocol’s share of interest. The function uses
the following formula:

8. Findings

8.1. High Findings

[H-01]

Description

Recommendation

Impact

underflows on

Implement an overloaded
function with a			 parameter, which should be
included in the available liquid balance before it is sent to the
reserve:

Users who encounter this issue may be unable to repay their
outstanding debt, leading to forced interest payments and potential
liquidation.

get-reserve-available-liquidity

accrued-to-treasury > ft-balance

get-reserve-available-liquidity

accrued-to-treasury

get-reserve-available-liquidity

liquidity-added

accrued-to-treasury

repay

mint-to-treasury

accrued-to-treasury <= (.asset[x] get-balance reserve)

(- (try! (contract-call? asset get-balance (get-reserve-vault

asset))) accrued-to-treasury)

(- (+ (try! (contract-call? asset get-balance

 (get-reserve-vault asset))) liquidity-added) accrued-to-treasury)`

https://gist.github.com/KristianApostolov/7dccd8f685fb71d8a5fb08ffb1aed191

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

9

The				 function calls
before updating the user’s balance. This function accrues any interest
the user may have earned since their last collateral supply and mints
it as receipt tokens. The protocol collects fees as a percentage of
the interest generated through borrowing, paid in receipt tokens and
accumulated in				 within the asset		
 		 . To claim these accrued tokens, the protocol must
call			 , which mints the tokens to the collection
address. The issue is that			 does not call 		
	 	 before minting the tokens, unlike the previous
	 implementation, which included this step in its	
function.

V1 reference:

[H-02] Not calling			 before
minting to collection address

Description

Recommendation

Impact

Ensure 			 is called before 	 in			 .

Collateral held by the collection address may accrue significantly
higher interest rates because its index and timestamp are only
updated during manual 	 and 		 operations. When
a manual collateral mutation occurs, the interest rate for the time
delta is applied to the entire amount as if it had been present for
the entire period.

pool-borrow-v-2.supply cumulate-balance

cumulate-balance

accrued-to-treasury

reserve-state

mint-to-treasury

mint-to-treasury

zToken mint

lp-sbtc-v1.clar

(define-public (mint (amount uint) (recipient principal))

 (begin

 (try! (is-approved-contract contract-caller))

 (let (

	 (ret (try!

 (cumulate-balance-internal recipient))) ;; @audit <--- cumulating

balance befo

)

	 (mint-internal amount recipient)

)

)

)

cumulate-balance

supply withdraw

cumulate-balance mint mint-to-treasury

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

10

In the				 contract, the function
						 determines
the collateral a liquidator will receive and the debt required. It
calculates the						 as the
collateral amount that could be purchased with the provided debt
and then computes					 by adding a
liquidation bonus.

When					 is less than or equal to
			 , the calculations are correct. However,
when					 exceeds
	 , both 		 and
are miscalculated. The 	 should be the amount
necessary to purchase the user-collateral balance adjusted for the
liquidation bonus, but it is incorrectly calculated as the amount
required to buy the				 reduced by the
liquidation bonus percentage. Similarly, the
	 is inaccurately computed.

[H-03] Conditional liquidation bonus
miscomputation

Description
liquidation-manager-v1-1

calculate-available-collateral-to-liquidate

original-collateral-purchasing-power

Correct the logic to ensure that in cases where
		 exceeds				 , the
	 and				 are accurately
calculated based on the full liquidation bonus.

max-collateral-amount-from-debt

max-collateral-amount-from-debt

max-collateral-

amount-from-debt

max-collateral-amount-from-debt

liquidation-bonus-collateral

liquidation-bonus-collateral

debt-needed

debt-needed

debt-needed

user-collateral-balance

user-collateral-balance

user-collateral-balance

liquidation-bonus-

collateral

user-collateral-

balance

original_collateral_purchasing_power = (

debt_to_liquidate * collateral_price / debt_currency_price

)

* (10^collateral_decimals / 10^principal_decimals)

max_collateral_amount_from_debt = original_collateral_purchasing_power * (

1 + liquidation_bonus

)

Recommendation

Impact
These miscalculations can lead to incorrect liquidation outcomes,
causing potential financial discrepancies in the protocol.

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

11

Replace the use of 			 for functions intended to be
linked to Stacks block production with 			 or
	 . Functions that do not rely on Stacks block
production and require consistent time measurement should
continue using burn-block-height, as Bitcoin block production
remains consistently around 600 seconds.

Currently, several variables that track a user’s position and health
are dependent on			 . For instance, compounded
interest is calculated based on the difference between
		 and				 . This
dependency poses a problem because it assumes a 1:1 linkage
between the 			 —the current height of the
underlying Bitcoin chain—and Stacks block production. With the
upcoming Nakamoto upgrade, Stacks block production will be
decoupled from Bitcoin, potentially causing core functionality to
break.

[H-04] Interest rate calculations will break
core functionality after Nakamoto hardfork

Description

burn-block-height

burn-block-height

block-height

stacks-block-height

burn-block-height

burn-block-height last-updated-block-reserve

Recommendation

Impact
This issue could enable multi-block, interest-free loans within
Stacks blocks that are ordered within the same tenure.

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

12

The 	 oracle determines the current price through the following
steps:

1. Querying the current	 rate.
2. Retrieving the current	 rate directly from the
	 contract.
3. Multiplying the STX price by the		 rate to obtain the 	
	 price.

This methodology depends directly on the current ratio of STX and
	 in			 . The function
				 invokes			 ,
which reads the STX balance of the contract directly. This direct
balance approach allows STX donations to immediately alter the
rate, thereby influencing the price of		 on Zest. Typically,
such donations are absorbed through MEV and don’t affect the
token’s price on oracles. However, a donation attack can instantly
impact the		 rate used on Zest, potentially leading to
exploit scenarios.

8.2. Medium Findings

[M-01]

Description

Recommendation

can be manipulated

Utilize				 , which already supports	 ,
to mitigate this issue.

get-stx-per-ststx

stSTX

stSTX

stSTX

stSTX

STX/USD

stSTX/STX

stSTX/STX

stSTX/STX

stacking-dao-core-v1

reserve-1.get-total-stx

arkadiko-oracle-v2-3

stacking-dao-

core-v1.get-stx-per-ststx

stSTX/USD

reserve-1

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

13

Failing to cumulate the borrowed asset before recalculating
interest rates results in lower accrued interest for
the leveraged balance, as interest rates are based on the
						 ratio. This makes
leveraging less profitable and, in some cases, even unprofitable,
depending on how the initial repayment affects the interest rate.

Users can increase their collateral leverage by supplying an asset,
borrowing it, and then supplying it again, repeating this process
until they reach their desired leverage level. This strategy enhances
collateral effectiveness but also raises the risk of liquidation. When
a leveraged user wishes to deleverage, they must repeatedly repay
and withdraw excess collateral to achieve their target leverage level.
However, the 		 function does not call			 for
the borrowed asset before repayment.

[M-02] Not calling 			 	 for
repaid asset leads to lower leveraged
returns

Description

Recommendation
Consider adding a 			 call to
before the			 function:

cumulate-balance

cumulate-balance

cumulate-balance pool-borrow-v1-2.repay

update-state-on-repay

total loan size/total collateral provided

repay

Impact

(try! (contract-call? lp cumulate-balance on-behalf-of))

;; *update-state-on-repay call*

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

14

The issue arises because		 is called after
		 , which includes interest rate recalculation.

The interest for the user’s initially supplied asset amount will be
calculated at the now-lowered rate, as if the utilization was lower
before the	 call.

Restructure the order of the functions in
to call			 before			 .

The				 function updates the current
borrowing indexes and then calls			 for the asset
being supplied before minting receipt tokens to the user and
transferring their collateral to the reserve. Interest rates are based
on the asset’s loan utilization ratio, which increases with higher
utilization and decreases with lower utilization.

[M-03] Calling				 after
updating interest rates in supply causes
causes lower asset returns

Description

Recommendation

cumulate-balance

cumulate-balance

cumulate-balance

cumulate-balance update-state-on-deposit

supply

state-on-deposit

update-

pool-borrow-v1-2.supply

pool-borrow-v1-2.supply

Impact

(try!

(contract-call? .pool-0-reserve update-state-on-deposit asset owner amount (is-eq cu

(try!

(contract-call? lp cumulate-balance owner)) ;; @audit <--- cumulating balance after

(try!

(contract-call? lp mint amount owner)) ;; @audit <--- minting receipt tokens

(try!

(contract-call? .pool-0-reserve transfer-to-reserve asset owner amount)) ;; @audit <

(try!

(contract-call? lp cumulate-balance owner)) ;; @audit <--- cumulating balance *befor

(try!

(contract-call? .pool-0-reserve update-state-on-deposit asset owner amount (is-eq cu

(try!

(contract-call? lp mint amount owner)) ;; @audit <--- minting receipt tokens

(try!

(contract-call? .pool-0-reserve transfer-to-reserve asset owner amount)) ;; @audit <

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

15

Arkadiko Oracle’s		 function returns a tuple with three
values:
	 represents the last 		 at which the price
was updated.

The issue arises because the		 is used across token-
specific contracts in the protocol without any safeguards against
price staleness.

8.3. Low Findings

[L-01] Not checking			 for staleness

Description

Recommendation

Impact

Implement a check to ensure that		 is within the current	
		 plus an acceptable staleness period.

Data mutations could be executed using stale and inaccurate prices.

get-price

block-heightlast-block

last-block

block-height

last-price

(tuple (decimals x) (last-block y) (last-price z))

last-block

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

16

The 		 function allows users to take out a flash loan in
an enabled asset, which they must repay along with a flashloan
fee in the callback they receive. The fee is a small fraction of the
flash-lent amount. However, the amount available for lending is
determined by 						 , which
subtracts the fees accrued to the protocol’s treasury
(). Although this amount is owned by the
protocol, it is part of the available liquidity and should be eligible for
flash borrowing.

[L-02] flashloan not lending out
amount

Description

Recommendation

Impact

Consider modifying the following code:

to this implementation, which returns the liquid amount of tokens
directly:

The protocol is missing out on additional, albeit small, amounts of
yield.

flashloan

get-reserve-available-liquidity

(available-liquidity-before (try! (contract-call? .pool-0-reserve

(available-liquidity-before (try! (contract-call? asset

get-reserve-available-liquidity asset)))

get-balance (get-reserve-vault asset)))

accrued-to-treasury

accrued-to-

treasury

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

17

When a user calls			 on an unhealthy position,
they can choose to receive either the underlying collateral or the
receipt token representation. The issue arises with the
		 option, where the receipt transfer function first
performs a		 	 from the liquidated user to the
liquidator. This is problematic because one of the requirements for 	
		 is that				 .

[L-03] Cannot liquidate yourself and receive
receipt tokens

Description

Recommendation

Impact

Consider bypassing the			 step when
			 and only perform cumulate-balance:

Due to this requirement, if a user attempts to self-liquidate, they will
encounter an unexpected revert with error	 , limiting them to using 	
				 when self-liquidating.

liquidation-call

SIP-10

SIP-10

ft-transfer?

ft-transfer?

ft-transfer? recipient != sender

recipient == sender

to-receive-atoken = false

u2

to-receive-atoken

(define-private (execute-transfer-internal

(amount uint)

(sender principal)

(recipient principal)

)

(let (

(from-ret (try! (cumulate-balance-internal sender)))

(to-ret (try! (cumulate-balance-internal recipient)))

)

(if (not

(is-eq sender recipient)) ;; @audit only call transfer if recipient != sender

(try! (transfer-internal amount sender recipient none))

true

)

;; ...

Security Review

ZEST PROTOCOL

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Zest Protocol

5. Risk Classification

7. Executive Summary

8. Findings

Summary of Findings

6. Security Assessment
 Summary

5.1. Impact

8.1. High Findings

8.2. Medium Findings

8.3. Low Findings

8.4. QA Findings

[H-01] get-reserve-avail-
able-liquidity underflows
on accrued-to-treasury >
ft-balance

[QA-01] Use get-price deci-
mals with to-fixed instead of
magic numbers

[M-01] get-stx-per-ststx
can be manipulated

[M-02] Not calling cumu-
late-balance for repaid
asset leads to lower
leveraged returns

[M-03] Calling cumu-
late-balance after updat-
ing interest rates in supply
causes causes lower asset
returns

[L-01] Not checking last-
block for staleness

[L-02] flashloan not lending
out accrued-to-treasury
amount

[L-03] Cannot liquidate
yourself and receive receipt
tokens

[H-02] Not calling cumu-
late-balance before mint-
ing to collection address

[H-03] Conditional liqui-
dation bonus miscompu-
tation

[H-04] Interest rate calcu-
lations will break core
functionality after Naka-
moto hardfork

5.2. Likelihood

5.3. Action required for
 severity levels

2
3

4
4

4

6

8

7

5

4

8

12

15

18

8

18

12

13

14

15

16

17

9

10

11

5
5

18

Use decimals from the 	 tuple and	 instead of
the current implementation.

8.4. QA Findings

[QA-01] Use 				 with to-fixed
instead of magic numbers

Description
get-price to-fixed

get-price decimals

