
ZEST PROTOCOL v2 SECURITY REVIEW

Conducted by:
KRISTIAN APOSTOLOV, ALIN BARBATEI (ABA), SILVEROLOGIST

OCTOBER 23RD, 2025

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

2

ClarityAlliance

Clarity Alliance is a team of expert whitehat hackers specialising in
securing protocols on Stacks.

They have disclosed vulnerabilities that have saved millions in
live TVL and conducted thorough reviews for some of the largest
projects across the Stacks ecosystem.

Learn more about Clarity Alliance at clarityalliance.org.

1. About Clarity Alliance

http://clarityalliance.org

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

3

ClarityAlliance

This report is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. This report is not, nor
should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts
Clarity Alliance to perform a security assessment.

This report does not provide any warranty or guarantee regarding
the absolute bug-free nature of the technology analyzed, nor do
they provide any indication of the technologies proprietors, business,
business model or legal compliance.

This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report
in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive
assessing process intending to help our customers increase the
quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level
of ongoing risk. Clarity Alliance’s position is that each company and
individual are responsible for their own due diligence and continuous
security. Clarity Alliance’s goal is to help reduce the attack vectors and
the high level of variance associated with utilizing new and consistently
changing technologies, and in no way claims any guarantee of security
or functionality of the technology we agree
to analyze.

The assessment services provided by Clarity Alliance are subject to
dependencies and under continuing development. You agree that your
access and/or use, including but not limited to any services, reports,
and materials, will be at your sole risk on an as-is, where-is, and as-
available basis.

Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. The assessment reports
could include false positives, false negatives, and other unpredictable
results. The services may access, and depend upon, multiple layers of
third parties. Notice that smart contracts deployed on the blockchain
are not resistant from internal/external exploit. Notice that active
smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Clarity Alliance does
not guarantee the explicit security of the audited smart contract,
regardless of the verdict.

2. Disclaimer

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

4

ClarityAlliance

3. Introduction
A time-boxed security review of Zest Protocol, where Clarity Alliance
reviewed the scope and provided insights on improving the protocol.

4. About Zest Protocol
Zest Protocol is the DeFi protocol built for Bitcoin. Fully on-chain and
open-source, it is building the future of Bitcoin finance.

We’ve launched Zest Protocol Borrow, enabling users to unlock liquidity
by borrowing against their assets.

Live on Stacks—the leading Bitcoin Layer 2—Zest is now the top DeFi
protocol on the network. Through the Stacks Market, users can deposit
idle assets such as STX, sBTC, stSTX, USDC, and others to earn yield,
accumulate points, and access overcollateralized loans..

Zest exists to make Bitcoin productive—every sat of it. The goal is to
build a vibrant borrowing and lending ecosystem around Bitcoin as an
asset.

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

5

ClarityAlliance

5.1 Impact

•	 High - leads to a significant material loss of assets in the
protocol or significantly harms a group of users.

•	 Medium - only a small amount of funds can be lost (such as
leakage of value) or a core functionality of the protocol is
affected.

•	 Low - can lead to any kind of unexpected behavior with some
of the protocol’s functionalities that’s not so critical.

5.2 Likelihood

5.3 Action required for severity levels

•	 High - attack path is possible with reasonable assumptions
that mimic on-chain conditions, and the cost of the attack is
relatively low compared to the amount of funds that can be
stolen or lost.

•	 Medium - only a conditionally incentivized attack vector, but
still relatively likely.

•	 Low - has too many or too unlikely assumptions or requires a
significant stake by the attacker with little or no incentive.

•	 Critical - Must fix as soon as possible (if already deployed)
•	 High - Must fix (before deployment if not already deployed)
•	 Medium - Should fix
•	 Low - Could fix

5. Risk Classification

Severity

Likelihood: High

Likelihood: Medium

Impact: High

Critical

High

Impact: Medium

High

Medium

Impact: Low

Medium

Low

Likelihood: Low Medium Low Low

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

6

ClarityAlliance

6. Security Assessment Summary
Scope
The following contracts, located in the zest-core repository, were
in the scope of the security review:

Given the number and severity of findings identified, Clarity Alliance
strongly recommend that the current snapshot undergo a
follow-up audit and further security enhancements to ensure that
any potential remaining underlying issues are addressed.

•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

Initial Commit Reviewed:
3c1f2ebe178081d118cd9005eddb02b97f6aaf95

Intermediate Commits Reviewed:
3924c43522c7523771fa340d5782966a9d59c52e

b1839d94a7a7f7f66f540bf3c198314b31802c99

bfbb7862c8def6a073af163da3b3425be0279381

Final Commit After Remediations:
f4987a8b177e3075ac658fabb87b1b249944a74d

dao/dao-multisig.clar

dao/dao-executor.clar

dao/dao-treasury.clar

dao/traits.clar

market/market.clar

market/market-vault.clar

registry/egroup.clar

registry/assets.clar

registry/reserve-calculator.clar

vault/vault-stx.clar

vault/vault-sbtc.clar

vault/vault-ststx.clar

vault/vault-usdc.clar

vault/vault-usdh.clar

vault/traits.clar

https://github.com/Zest-Protocol/zest-core
https://github.com/Zest-Protocol/zest-v2/tree/3c1f2ebe178081d118cd9005eddb02b97f6aaf95
https://github.com/Zest-Protocol/zest-v2/commit/3924c43522c7523771fa340d5782966a9d59c52e
https://github.com/Zest-Protocol/zest-v2/commit/b1839d94a7a7f7f66f540bf3c198314b31802c99
https://github.com/Zest-Protocol/zest-core/tree/bfbb7862c8def6a073af163da3b3425be0279381
https://github.com/Zest-Protocol/zest-core/commit/f4987a8b177e3075ac658fabb87b1b249944a74d

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

7

ClarityAlliance

7. Executive Summary
Over the course of the security review, Kristian Apostolov, Alin
Barbatei (ABA), Silverologist engaged with - to review Zest Protocol.
In this period of time a total of 47 issues were uncovered.

Protocol Summary

Findings Count

Protocol Name

Severity

Total Findings 47

Amount

Date

Zest Protocol

October 23rd, 2025

Low

High

Critical

7

11

2

QA

Medium

10

17

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

8

ClarityAlliance

Summary of Findings

[C-01]
FlashLoan Vulnerability: Potential for
Artificial Vault Share Inflation and
Vault Draining

Resolved

[C-02] Repaid Interest Is Not Accounted For Resolved

[H-01] Incorrect Rounding Direction When
Calculating Vault Shares or Assets Resolved

[H-02] FlashLoan Balance Check Issue Resolved

[H-03] FlashLoan Fees Are Lost Resolved

[H-04] Share Price Manipulation Allows
Token Theft Resolved

[H-05] Missing Interest Accrual When
Removing Collateral Resolved

[H-06] Vault Accrual Through The Market
Contract Issue Resolved

[H-07] Borrowers Can Prevent Bad Debt
Socialization Resolved

[H-08] Liquidated Debt Incorrectly
Socialized as Bad Debt Resolved

[H-09] Disabled Collaterals Can Be Used To
Extract Liquidity Resolved

[H-10] Limiting and Bypassable FlashLoan
Fee Payment Check Resolved

[H-11] Rounding Inconsistencies Resolved

[M-01] Vaults Are Not SIP-10 Compliant Resolved

[M-02] Inaccurate Conversion Results Due to
Missing Interest Accrual Resolved

[M-03] Vaults Are Tied to the Router
Contract Resolved

[M-04] Disabled Collateral Cannot Be
Withdrawn Resolved

[M-05] Protocol Pausing Issues Resolved

[M-06] Governance Proposals Never Expire Resolved

[M-07]
DAO Can Set Invalid Multisig
Configuration and Disrupt
Governance

Resolved

ID Title Severity Status

Medium

Medium

Medium

Medium

Medium

Medium

Medium

High

High

High

High

High

High

High

High

High

High

High

Critical

Critical

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

9

ClarityAlliance

Summary of Findings

[M-08] Vault Availability Implementation
Issue Resolved

[M-09] Liquidation Fails When Borrowers
Have No Debt and No Collateral Resolved

[M-10]
Fee Reserve Percentage Change Is
Applied Retroactively on Pending
Debt

Resolved

[M-11]
Utilization Configuration Changes
Are Applied Retroactively on Pending
Debt

Resolved

[M-12]
Accrue Must Be Called Before
Pausing to Prevent Loss of Pending
Debt

Resolved

[M-13] Rounding in Bad Debt Socialization
Causes Debt Mismatches Resolved

[M-14] Precision Loss Leads to
Underestimated Interest Rates Resolved

[M-15] Pyth Price Confidence Interval Is Not
Validated Resolved

[M-16] Oracle Freshness Check Issues Resolved

[M-17] Liquidation Penalty Can Exceed
Maximum Allowed Resolved

[L-01] Non-Standard Vault Withdraw Entry
Point Behavior Resolved

[L-02] Incorrect Return Value on Vault
Operations Resolved

[L-03] Severe Lack of Emitted Events Acknowledged

[L-04] assets::get-nr-enabled Function is
Unusable Resolved

[L-05] Limiting and Bypassable FlashLoan
Fee Payment Check Acknowledged

[L-06] Market ZToken Data Insertion
Overhead Resolved

[L-07] Limited Precision in Liquidation
Exponent Calculation Acknowledged

ID Title Severity Status

Low

Low

Low

Low

Low

Low

Low

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

10

ClarityAlliance

Summary of Findings

[QA-01] Limiting Vault Borrow-Repay
Recipient Interface Acknowledged

[QA-02] Limiting FlashLoan Design Resolved

[QA-03] Eliminate Redundant begin Blocks
in let Blocks Resolved

[QA-04] Improve Switch-Like Statements Acknowledged

[QA-05] Severe Violation of Single
Responsibility Principle Resolved

[QA-06] Inline All Pack and Mathematical
Operations Resolved

[QA-07] Debt Cap Versus Borrow Cap
Considerations Acknowledged

[QA-08] Typographical Error Resolved

[QA-09] Optimization of Accrue for Liquidity
and Index Reads Resolved

[QA-10] Cleanup Codebase Functions Resolved

ID Title Severity Status

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

11

ClarityAlliance

The vault’s 		 functionality operates by sending funds to a
callback contract and then checking the ending contract balance, which
must include the original balance plus a fee.

This design flaw allows an attacker to execute a flashloan of the entire
vault balance, redeposit it, pay a minimal fee on the loan, and consequently
acquire approximately 50% of the vault shares.

With these 50% shares, the attacker can withdraw half of the vault’s
underlying liquidity. Therefore, if the flashloan fee applied to the entire
vault balance is less than 50% of the vault’s liquidity, the attack becomes
profitable.

Note: This issue was identified by the developer during the testing phase.

Implement a mutex-type lock to prevent any deposits or withdrawals into
the vault during the execution of a flashloan.

[C-01] FlashLoan Vulnerability: Potential for
Artificial Vault Share Inflation and Vault Draining

Description

Recommendation

8.1. Critical Findings

8. Findings

flashloan

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

12

ClarityAlliance

[C-02] Repaid Interest Is Not Accounted For

Description
When a loan is repaid, the vaults are accessed through the market
contract and router using the				 function. This
function calculates the actual reduction in the borrowed principal amount,
which is less than the total repayment because it includes interest.

The actual principal deduction is represented by	 :

However, the paid interest is neither separated nor added to the	 .
As a result, the paid interest is effectively lost within the vault.

vault::system-repay

pratio

assets

(pratio (principal-ratio-reduction- actual-amt p d))

Calculate the equivalent repaid debt amount for the user and identify the
difference between the reduction amount and the debt amount as interest.

Recommendation

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

13

ClarityAlliance

Implement a		 equivalent in the	 contracts, such
as		 , and inline it within each vault to minimize significant
contract overhead calls.

When depositing into the new Zest vaults, the conversion of assets to
shares during deposits and vice versa utilizes a	 function:

The		 function is a wrapper for a similarly named function from 	
	 the contract, implemented as follows:

The		 function is composed of the	 function followed
by the	 function. Both	 and	 employ a rounding method that
rounds to the nearest whole unit, rather than consistently rounding up or
down.

For any vault-related operations, rounding should always be in favor of
the protocol to prevent value leakage. For instance, if the current rounding
logic rounds up during		 operations, it could result in extracting
more assets than intended.

This issue could even lead to the last withdrawer being unable to receive
funds, as the rounding might attempt to withdraw more funds than are
available in the contract at that time.

[H-01] Incorrect Rounding Direction When
Calculating Vault Shares or Assets

Description

8.2. High Findings

mul-div

mul-div

math::mul-div

mul-div-down

(/(* x y) z)

vault-*

withdraw

mul

mul divdiv

math

(define-private (convert-to-shares- (amt uint))
;; ... code ...
 (mul-div amt ts ta))))

(define-private (convert-to-assets- (amt uint))
;; ... code ...
 (mul-div amt ta ts))))

(define-read-only (mul (x uint) (y uint)) (/ (+ (* x y)
 (/ PRECISION u2)) PRECISION))
(define-read-only (div (x uint) (y uint)) (/ (+ (* x PRECISION) (/ y u2)) y))
(define-read-only (mul-div (x uint) (y uint) (z uint)) (div (mul x y) z))

Recommendation

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

14

ClarityAlliance

[H-02] FlashLoan Balance Check Issue

Description
The vault contracts permit the execution of flashloans using the underlying
amounts. Users receive a specified amount and are required to repay it to
the vault contract, along with a fee.

However, the final balance check, intended to verify that the new balance
has increased by the fee, is incorrect. The	 variable is calculated as
twice the vault balance plus the fee. Consequently, the current condition
effectively checks that after a flashloan, the balance has doubled plus
fees.

This renders the functionality unusable, as users would incur a loss if they
attempted to use it.

Modify the calculation of	 to be			 .

Recommendation

(define-public (flashloan (amt uint) (fc ‹flash-callback>) (memo (optional
 (buff 34))))
 (let (
 ;; ...
	 (fee	 (/ (* amt FEE-FLASH) BPS))
	 (ubal	 (ubalance))
	 (delta	 (+ ubal fee))
	 (next	 (+ ubal delta)))
 ;; ...
 (asserts! (is-eq (ubalance) next) ERR-LENDING-POSTCONDITIONS)

next

next (+ ubal fee)

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

15

ClarityAlliance

[H-03] FlashLoan Fees Are Lost

Description
Once a flash loan is taken and the fees are repaid, they remain within the
vault.

However, these fees are not included in the vault's		 total, which
means they are effectively trapped in the contract and do not contribute
to liquidity provider rewards.

Incorporate the fees into the contract's	 variable.

Recommendation

assets

assets

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

16

ClarityAlliance

[H-04] Share Price Manipulation Allows
Token Theft

Description
The calculation of LP shares for deposits into an empty vault allows
the first depositor to potentially manipulate the LP token's share price.
This manipulation enables attackers to extract value from subsequent
depositors through a known variation of the first depositor attack.

When adding liquidity to a vault, the following formula is used to determine
the number of shares for the LP:

•	 If the vault is empty:
•	 Otherwise:

By repeatedly making cleverly chosen small deposits and withdrawals,
an attacker can inflate the shares-to-asset ratio, making 1 unit of share
significantly more valuable. This allows for the complete depletion of a
future depositor's assets. This strategy also requires some Stacks blocks
to pass, allowing interest to accrue on the small deposits, which facilitates
the attack.

To completely avoid this issue, a minimum LP must be locked on the first
deposit into empty pools, ensuring no problematic rounding issues occur.

This can be implemented at contract deployment by calling		
with a minimum amount and having the LP burned. The burning should be
directed to the		 address, not to the pool, to prevent retrieval in case
of future custom pools.

Example implementation (to be set at the end of the		 contracts):

Apply the same fix to all vaults.

Recommendation

LP = amount-of-assets-deposited

LP = amount-of-assets-deposited * total-supply / total-assets

deposit

vault

NULL

(define-constant NULL-ADDRESS (unwrap-panic (principal-construct?
 (if is-in-mainnet 0x16 0x1a) 0x00)))
(deposit u1000 u0 NULL-ADDRESS)

https://x.com/kankodu/status/1771229163942474096

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

17

ClarityAlliance

[H-05] Missing Interest Accrual When
Removing Collateral

Description
When a user withdraws collateral through				 ,
the resulting position is correctly validated to ensure a healthy Loan-to-
Value (LTV) ratio.

This health check depends on the total debt value, which is calculated
using the vault index at the time of withdrawal. If the vault index is
outdated, the calculated debt value will be lower than the actual debt
owed.

However, the withdrawal process does not trigger interest accrual
to update the vault index before calculating the total debt value.
Consequently, the total debt value used in the LTV check only includes
interest accrued up to the last accrual event, not up to the current block.

Before invoking	 within				 , ensure
interest is accrued on the relevant vaults to keep the vault index current.

Recommendation

market::collateral-remove

market::collateral-removenotional

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

18

ClarityAlliance

[H-06] Vault Accrual Through The Market
Contract Issue

Description
Before any user operation involving debt (such as removing collateral,
borrowing, or liquidating), the 		 contract calls			
targeting a specific vault involved in the operation.

However, this approach is insufficient because a user may have multiple
borrowed assets, all of which need to be accrued before retrieving the
debt index. This index is necessary to calculate the notional debt value.
As a result, there is a risk of missing debt on user-borrowed assets.

;

For each borrowed asset, accrue interest before performing any market
operations. Due to limitations in Stacks and Clarity, implementing this
may be challenging. Therefore, the following optimizations are
recommended:

•	 Modify the			 function to return the updated index and
liquidity index.

•	 In the		 contract, create a map of		 →
								 to be
populated by an accrue function.

•	 Develop a generic accrue function that iterates through all existing
vaults (or a specified list of vault IDs) and calls	 only if the
cached amounts for the vault are not up to date.

•	 Implement a specific getter for retrieving these amounts.

By adopting this approach, only the first call in a block will need to
perform the calculation, and the result will be stored in the router.
Although there is a cache in the vaults themselves, not calling them
ensures a -3 deduction on read count.

To further enhance the system, the cache can be implemented in the 	
	 contract itself, thereby improving read efficiency and reducing
execution costs.

Recommendation

market vault-router:accrue

vault::accrue

accrue

market

vault-router asset-id {last-

updated-block:uint, index:uint, liquidity-index:uint}

https://github.com/Zest-Protocol/zest-v2/blob/3924c43522c7523771fa340d5782966a9d59c52e/contracts/market/market.clar#L190-L194

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

19

ClarityAlliance

Recommendation
Adjust						 to use the correct
formula:						 .

Example implementation:

Additionally, modify the			 function to call the
updated function appropriately. The available liquidity can be obtained
using the			 function.

Example implementation:

Note: The current implementation of 		 is incorrect, but this
is addressed in another issue. Both issues need to be resolved to fully
address this finding if the		 function is reused.

reserve-calculator::calc-utilization

vault:: utilization

vault:: available

available

available

debt * BPS / (debt + available liquidity)

(define-read-only (calc-utilization (available-liquidity uint) (debt uint))
 (if (is-eq assets u0)
	 u0
	 (contract-call? math mul-div debt BPS (+ debt available-liquidity))))

(define-private (utilization)
 (let	 ((a (available))
	 (d (debt)))
 (contract-call? .reserve-calculator
		 calc-utilization
		 a
		 d)))

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

20

ClarityAlliance

[H-07] Borrowers Can Prevent Bad Debt
Socialization

Description
After a liquidation is executed, the protocol only socializes bad debt if the
borrower's remaining collateral across all asset types is exactly zero and if
they have exactly one type of collateral asset.

Additionally, liquidations are processed one collateral type at a time, which
means that to reach this point, several other user liquidations are needed
to remove the user's collateral to this extent.

This design creates an opportunity for borrowers to front-run liquidation
transactions. A borrower can deposit a minimal amount of another
collateral type (different from the one being liquidated) just before a
liquidation that would otherwise trigger bad debt socialization.

By doing so, the borrower ensures that they never have zero collateral
overall, thereby preventing bad debt socialization indefinitely.

Introduce a			 function that enables liquidators to liquidate
multiple positions in one call. Using this function, a liquidator can
liquidate all collateral types associated with a borrower in a single
transaction.

Recommendation

;; check if this liquidation removed ALL collateral
(let ((no-collateral-left
	 (and
 ;; Only had one collateral type
	 (is-eq (len (get collateral pos)) u1)
	 ;; And we're taking all of it
	 (is-eq user-coll-balance coll-actual))))

liquidate-multi

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

21

ClarityAlliance

[H-08] Liquidated Debt Incorrectly Socialized as
Bad Debt

Description
After a liquidation, if the borrower's remaining collateral is zero, the
protocol initiates the process of socializing bad debt.

During this process, the contract iterates through each of the borrower's
debt positions and calls			 , using			
as the debt data to be socialized.

However, the	 variable reference used here contains outdated data,
reflecting the borrower's debt before the liquidation occurred.

This results in the liquidated debt being mistakenly treated and socialized
as bad debt.

Ensure that debt socialization is performed on an updated debt list.

To implement this more efficiently, use the return value of
			 , which represents the updated debt amount.
Move the last two market calls from the		 function into the
same	 block with the			 variable. In the
		 branch, directly remove the		 entry from
the	 position using a filter, and only add it back with the
updated amount if the updated amount is greater than 0 (indicating there
is still debt).

Recommendation

socialize-debt-asset

market-

liquidate

debt-aid

(get debt pos)

let no-collateral-left

no-collateral-left

vault::debt-remove-scaled

get debt pos

pos

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

22

ClarityAlliance

[H-09] Disabled Collaterals Can Be Used To
Extract Liquidity

Description
During liquidation, the liquidator selects a type of collateral to receive in
exchange for repaying the borrower's debt. The contract retrieves the
relevant collateral data from the	 , which contains only enabled
collateral tokens:

If a liquidation targets a disabled collateral token, the call to		
will return	 , causing		 to revert. This makes it
impossible to request disabled collateral tokens during liquidation.

This behavior can be exploited to drain liquidity from the protocol.
Consider the following attack scenario:

•	 Collateral token	 is about to be disabled.
•	 Bob front-runs the disabling by taking out loans across all vaults, using 	

	 as collateral.
•	 After is disabled, Bob back-runs the transaction by depositing a

minimal amount of another collateral type, , and then liquidates
himself using the	 token.

•	 This liquidation triggers bad debt socialization for Bob's entire loan, as
disabled collateral tokens are not accounted for.

•	 Once his debt is socialized, Bob can withdraw all of his	 collateral,
effectively stealing the full liquidity previously borrowed.

Through this sequence, the attacker can drain the vaults' available liquidity
while offloading the debt to the protocol via socialization.

Ensure that withdrawals of disabled collateral tokens are allowed only
when the position remains healthy after the withdrawal. This means that in
			 , two post-removal Loan-to-Value (LTV)
ratios should be calculated: one for active collaterals and one for all
collaterals.

If the active collateral LTV is healthy, the withdrawal can proceed
successfully. Otherwise, the withdrawal can only proceed if the removed
collateral is disabled and the full LTV is healthy.

Recommendation

alist

find-asset

none

C1

C1

C1

C1

C2

C2

unwrap-panic

(coll-asset-info (unwrap-panic (find-asset coll-aid alist)))

market::remove-collateral

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

23

ClarityAlliance

[H-10] Limiting and Bypassable FlashLoan
Fee Payment Check

Description
To utilize the flashloan vault functionality, a fee must be paid. The
		 function ensures that the fee is added to the vault's
underlying balance by checking for a balance increase, referencing the
balance before the callback is executed:

This approach is problematic because it assumes that the balance
increase is solely due to fee repayment. This assumption is incorrect, as
a caller, during a flashloan, can liquidate positions or repay debt on their
own positions. Both actions would increase the underlying vault balance
by simply repaying the loan.

This scenario allows for fee bypassing if the caller already intended to
liquidate and /or repay a position. It results in a complete fee bypass if no
more than the fee is repaid; otherwise, the
revert is triggered in			 .

Additionally, the strict equality assertion in the ending balance check:

can trigger the revert scenario during regular usage.

For example, if a liquidation bot uses a flashloan to repay debt on vaults, it
will block itself due to the loan repayment, limiting its actions.

Modify the fee verification mechanism from a balance check to a per-
transfer basis. To implement this, send the flashloaned amount to the
caller (or designated principal) instead of the callback contract. At the end,
transfer the original amount with the fees from the caller back to the vault.

This workaround is effective because funds can be pulled from any third-
party address if the caller is that third party, meaning the funds can only
be taken from either the 		 or	 , provided the
underlying token supports both authorization modes.

Not all tokens support both authorization modes. For instance, some
newer tokens, such as sBTC, authorize either the caller or sender:

Recommendation

vault::flashloan

vault::flashloan

contract-caller tx-sender

ERR-LENDING-POSTCONDITIONS

(let (
	 ;;... code ...
	 (ubal	 (ubalance)))
 ;;... code ...
	 (try! (utransfer amt callback false))
	 (try! (contract-call? fc callback amt fee memo))
	 (asserts! (is-eq (ubalance) (+ ubal fee)) ERR-LENDING-POSTCONDITIONS)

(asserts! (is-eq (ubalance) (+ ubal fee)) ERR-LENDING-POSTCONDITIONS)

https://explorer.hiro.so/txid/SM3VDXK3WZZSA84XXFKAFAF15NNZX32CTSG82JFQ4.sbtc-token?chain=mainnet

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

24

ClarityAlliance

(define-public (transfer (amount uint) (sender principal)
 (recipient principal) (memo (optional (buff 34))))
 (begin
 (asserts! (or (is-eq tx-sender sender)
 (is-eq contract-caller sender)) ERR_NOT_OWNER)

(define-public (transfer (amount uint) (sender principal)
 (recipient principal) (memo (optional (buff 34))))
 (begin
 (asserts! (is-eq tx-sender sender) (err ERR_NOT_AUTHORIZED))

However, older tokens, such as stSTX, only authorize	 .

Notably,	 is the only token in the current vaults that does not
support		 transfer validation.

tx-sender

stSTX

contract-caller

https://explorer.hiro.so/txid/SP4SZE494VC2YC5JYG7AYFQ44F5Q4PYV7DVMDPBG.ststx-token?chain=mainnet

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

25

ClarityAlliance

[H-11] Rounding Inconsistencies

Description
The	 contract is extensively utilized throughout the codebase for its
mathematical helper functions.

These operations exhibit a concerning rounding behavior, consistently
rounding to the nearest whole unit. This is achieved by adding half of
the divisor in each case. Consequently, the result is rounded down if the
original result is less than the semantic equivalent of	 , or rounded up
if it is	 or greater.

This leads to both rounding up and rounding down within the same
operation, depending on the inputs throughout the protocol. Such
inconsistency in behavior can cause significant issues in various parts
of the system, including dust accumulation, mismatched accounting,
incorrect assumptions of rounding down, and other potential side effects.

Implement the following changes:

•	 Rename	 and	 to		 and			 to
accurately div-precision reflect that they implicitly divide by precision.

•	 Create specific -down or -up versions for each function to ensure
consistent rounding	 or 	 .

•	 Inline all these functions within the contracts that utilize them, as the
overhead of duplicating these one-liner functions is not justified by the
read count block limitation.

•	 Clearly indicate the intent of each rounding operation in the codebase.
Use the up or down version as necessary to ensure the protocol does
not incur a loss.

While these recommendations are general, we have identified and
separated several specific rounding issues into their own distinct versions.

Recommendation

(define-read-only (mul (x uint) (y uint)) (/ (+ (* x y)
 (/ PRECISION u2)) PRECISION))
(define-read-only (div (x uint) (y uint)) (/ (+ (* x PRECISION) (/ y u2)) y))
(define-read-only (mul-div (x uint) (y uint) (z uint)) (div (mul x y) z))

(define-read-only (mul-bps (x uint) (y uint)) (/ (+ (* x y) (/ BPS u2)) BPS))
(define-read-only (div-bps (x uint) (y uint)) (/ (+ (* x BPS) (/ y u2)) y))
(define-read-only (mul-div-bps (x uint) (y uint) (z uint)) (div-bps
 (mul-bps x y) z))

math

mul div

-down -up

mul-precision div-precision

.5

.5

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

26

ClarityAlliance

Separate the checks as indicated by the standard and return the
appropriate error code for each case.

•	 			 and				 check
•	
•	 				 custom, will be

The SIP-10 standard specifies that the	 function should return
error codes following a specific pattern:

When returning an error in this function, the error codes should follow
the same patterns as the built-in			 and
functions.

However, the Zest vaults do not adhere to this standard. They combine all
checks and return a non-standard error value.

As a result, the vaults are not SIP-10 compliant, which may lead to issues
with third-party integrations.

This issue affects all vault contracts:		 ,		 ,
	 ,		 ,		 .

[M-01] Vaults Are Not SIP-10 Compliant

Description

8.3. Medium Findings

Recommendation

error code reason

u1 does not have enough balance

u2 and are the same principal

u3 is non-positive

u4 is not the same as

sender

sender

sender

amount

recipient

tx-sender

(asserts!
 (and
 (is-eq tx-sender from)
 (is-eq contract-caller from)
 (> amt u0)
 (not (is-eq SELF to))
)
 ERR-TOKENIZED-VAULT-PRECONDITIONS)

transfer

ft-transfer?

vault-sbtc

u4

u3

u5

vault-stx

vault-ststx

vault-usdc

(> amt 0)

(not (is-eq SELF to))

(is-eq tx-sender from) (is-eq contract-caller from)

vault-usdh

stx-transfer?

https://github.com/stacksgov/sips/blob/main/sips/sip-010/sip-010-fungible-token-standard.md#transfer
https://github.com/stacksgov/sips/blob/main/sips/sip-010/sip-010-fungible-token-standard.md#transfer

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

27

ClarityAlliance

[M-02] Inaccurate Conversion Results Due to
Missing Interest Accrual

Description
The functions			 and			 enable users
and integrators to estimate the current exchange rate between assets and
shares.

However, the calculation of		 , defined as
	 , relies on the current accrued interest. If the interest has not
been updated before this computation, both the interest and reserves
values become outdated.

Consequently, the		 figure is underestimated, leading to
inaccurate conversion results:

•	 			 returns a lower-than-expected value.
•	 			 returns a higher-than-expected value.

Develop two versions of the conversion functions:

•	 				 and				 , which
function exactly as they do now and are read-only.

•	 			 and			 , which first call to
accrue interest, are public, and would require signing a transaction.

Another approach is to simulate an interest accrual (without saving the
state) and use that previewed accrual to determine precisely how the
conversions would be, even after an accrual. This also has the advantage
of maintaining the two conversion functions as read-only.

Recommendation

convert-to-assets

convert-to-assets

convert-to-assets

convert-to-assets-stale convert-to-shares-stale

total-assets

total-assets

reserves

assets + interest -

convert-to-shares

convert-to-shares

convert-to-shares

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

28

ClarityAlliance

[M-03] Vaults Are Tied to the Router Contract

Description
In the current system design, the	 contract serves as the entry
point for borrowing, lending, and liquidation. It is stateless and directly
calls the		 as an intermediary to access the vaults, thereby
avoiding the need to pass traits.

In the event of an update, the intended design is to modify the		
and		 contracts, as they do not hold any state, while reusing
the other existing contracts within the system.

However, the		 contracts have hardcoded the system
authorization check, which allows access to the underlying liquidity, to the
specific	 and		 contracts:

This setup makes it impossible to reuse the vaults in the event of an
upgrade involving a new asset. For instance, if a new asset is enabled and
the		 does not support it, the		 needs to be
changed. However, only it and the existing	 contract are permitted
to interact with the current vaults, necessitating changes to the
contract as well.

If the design intention is to avoid using traits, modify the	 check
in all vaults to utilize pre-set, DAO-approved contract addresses (which
can default to the existing	 and).

Additionally, since there is no direct call from the	 contract to the
vault contracts, only through the	 , consider whether the
				 condition should be removed.

Recommendation

market

market

.market

market

market

SYSTEM

market

vault-*

market

vault-router

vault-router

vault-router

vault-router

vault-router

vault-router

(is- eq contract-caller .market)

vault-router

(define-private (SYSTEM)
 (begin
 (asserts!
 (or
 (is-eq contract-caller market)
 (is-eq contract-caller .vault-router))
 ERR-AUTH)
 (ok true)))

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

29

ClarityAlliance

[M-04] Disabled Collateral Cannot Be Withdrawn

Description
In the			 contract, users can deposit collateral for any token
that has been enabled. However, the DAO has the authority to disable any
collateral token at any time using			 .

If a collateral token that was previously approved is later disabled, users
should still be able to withdraw their deposited collateral. In the current
implementation, however, all withdrawal attempts for disabled collaterals
will fail.

In the				 process, the notional values of all
relevant assets are initially retrieved. Disabled collaterals are not included
in this set.

Consequently, in		 , when calculating the value of the asset to
be removed based on the notional assets data, the operation will fail.
This failure occurs when		 is invoked on the result of
	 , which returns	 :

Since disabled collateral tokens are excluded from the LTV calculation,
their real price-based values do not need to be computed. Instead, the
value can be hardcoded to .

Recommendation

market-vault

assets::disable

calc-delta

unwrap-panic

find-asset none

0

market::collateral-remove

(let ((a (unwrap-panic (find-asset aid alist)))

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

30

ClarityAlliance

[M-05] Protocol Pausing Issues

Description
Borrowing and lending protocols typically involve a wide range of
operations and components. Throughout the lifecycle of a protocol, there
may be instances where the system, or parts of it, need to be paused,
such as during component upgrades (e.g., the	 contract).

The current codebase lacks any protocol control flow operations, making it
difficult to handle black swan events or unforeseen situations.

Implement individual pausing mechanisms for each component and
operation:

	գ In each vault contract, add separate pause functionality for:

•	 	 : providing liquidity
•	 	 : removing liquidity
•	 		 : borrowing
•	 		 : repaying
•	 	 : accruing interest
•	 	 : allowing flashloans

	գ In each		 contract, add separate pause functionality for:

•	 	
•	
•	
•	

It is important to consider several caveats regarding pausability:

1.	 If repaying debt is blocked (either
or), then liquidation must also be blocked.
Allowing users to be liquidated when they cannot protect themselves
is not a valid approach.

2.	 If the system is generally paused, interest should not accrue (some
pauses need to be correlated here); it must be skipped.

3.	 After unpausing liquidations (if repays were also paused), there
should be a grace period during which no user can be liquidated until
the period has ended. The grace period should provide enough time
for users to manage their positions but not be too long, as it allows
any bad debt to accumulate interest during that period; a 24-hour
maximum is the recommended upper limit.

4.	 If interest accruing is paused, the function itself must not revert but
should continue as a pass-through. Otherwise, other operations (e.g.,
vault depositing) are implicitly blocked as well.

Recommendation

deposit

market

flashloan

redeem

accrue-

system-borrow

collateral-add

debt-add-scaled

collateral-remove

market-vault

debt-remove-scaled

vault::system-repay

market-vault::debt-remove-scaled

system-repay

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

31

ClarityAlliance

[M-06] Governance Proposals Never Expire

Description
When a proposal is created in the		 , there is currently no
mechanism to add an expiration date or deadline to it. Proposals only
include the script to be executed, the approvers, whether it was executed,
the creation time, and its urgency.

As a result, any outdated proposal from the past can still be executed
in the future, even if years have passed. This situation allows any future
governance holder, whether compromised or simply in disagreement with
others, to take any past proposal and approve it, potentially making it valid
and executable.

Additionally, since proposals cannot be rejected, there is no way to cancel
a stale proposal.

Introduce a deadline for proposals so that the		 function will
reject any proposal after a specific time, and the	 function will
also reject the approval of an expired proposal.

Recommendation

dao-multisig

execute

approve

(define-map proposals
 uint
 {
 script : principal,
 approvals : (list 20 principal),
 executed : bool,
 created-at : uint,
 urgent : bool
	 })

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

32

ClarityAlliance

[M-07] DAO Can Set Invalid Multisig Configuration
and Disrupt Governance

Description
Description The current		 implementation permits future
upgrade scripts to modify both the current signers and the required
approval threshold. However, there are no sanity checks on these inputs,
allowing configurations that could permanently obstruct governance.

Possible scenarios include:

1.	 An unlimited number of signers can be added via		 , even
though a maximum of only 20 can approve a proposal.

2.	 All signers from the multisig can be removed via			 ,
effectively blocking any further operations.

3.	 Removing a signer must always ensure that the remaining number of
signers is sufficient to meet the approval count.

4.	 The approval threshold can be set via		 to a number
exceeding the current number of signers, thereby blocking the
multisig.

Monitor the current number of signers in a data variable and implement the
following checks:

•	 Do not allow		 to add more than 20 unique signers at any
time; a check in		 must ensure that an existing member is
not added again.

•	 Do not allow		 to be called if there is only one signer at
that moment;		 should also verify that it does not
attempt to remove an already removed or non-existent member.

•	 Do not allow		 to be called if the new signer count is
less than the current threshold value.

•	 Do not allow		 to be called with a threshold exceeding
the existing number of signers.

Recommendation

dao-multisig

remove-signer

remove-signer

remove-signer

remove-signer

set-threshold

set-threshold

add-signer

add-signer

add-signer

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

33

ClarityAlliance

[M-08] Vault Availability Implementation Issue

Description
With the latest changes, the			 function, which is used to
manage liquidity redemption, is implemented as follows:

Modify the		 function to check for underflow and return 0 if no
funds are available. Additionally, adjust it to determine the exact borrowed
amount (debt minus interest), subtract that from the assets, and use this
as the correct available amount.

There are two issues with this implementation:

1. It can overflow when the debt exceeds the deposited assets.

Although		 is only used to determine the assets available
for redemption, and the		 function would have reverted due
to the failed precondition of			 , third-party integrators may
encounter problems. For instance, they might want to check availability
before attempting a redemption.

2. It does not accurately represent the amount available for redemption.

Assets represent the total liquidity deposited, and debt represents the
amount owed. However, their difference does not accurately reflect the
tokens available for redemption. Debt includes both the borrowed amount
and accumulated interest.

Consider an example where:

•	 Assets are 50 million
•	 Borrowed assets are 35 million
•	 Pending interest is 10 million

The availability is calculated as 0, even though there are still 15 million
liquid assets in the vault that can be redeemed.

Recommendation

(define-read-only (available)
 (let ((a (assets))
 (d (debt)))
 (- a d)))

vault::available

available

available

vault:redeem

(>= av inkind)

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

34

ClarityAlliance

[M-09] Liquidation Fails When Borrowers Have
No Debt and No Collateral

Description
After a liquidation is executed, the system checks if bad debt socialization
is necessary.

This process is initiated when the borrower's remaining collateral is exactly
zero. In such instances,			 is called for each of the
borrower's debt positions, which then calls			 , and
finally				 .

Within this sequence, the			 function ensures that
only positive debt amounts can be socialized:

However, there is no prior safeguard to prevent execution when liquidation
results in both zero collateral and zero debt.

Consequently, these liquidations will always revert when they attempt to
socialize non-existent debt.

Before initiating the bad debt socialization process, ensure that the
borrower still has an outstanding debt amount.

Recommendation

(asserts! (> amount u0) ERR-LENDING-PRECONDITIONS)

socialize-debt-asset

vault-socialize-debt

vault::socialize-debt

vault::socialize-debt

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

35

ClarityAlliance

[M-10] Fee Reserve Percentage Change Is
Applied Retroactively on Pending Debt

Description
The DAO has the ability to modify the fee percentage of each debt
increase that is allocated to the treasury reserve. This percentage can be
adjusted using the				 function.

A significant oversight with this function is that it does not accrue interest
on the current amount before applying the new fee.

As a result, all accrued interest, which was not accounted for under the
previous configurations from the last		 call until the fee change, is
incorrectly split using the new fee reserve. This effectively acts as a
retroactive fee change, which should not occur.

Invoke		 before changing the fee reserve in the
	 function. Ensure this change is applied to all vaults.

Recommendation

vault::set-fee-reserve

vault::set-fee-

accrue

accrue-

reserve

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

36

ClarityAlliance

[M-11] Utilization Configuration Changes Are
Applied Retroactively on Pending Debt

Description
The DAO has the ability to modify the vaults' fund utilization configuration
settings, which determine the interest rates. These configurations include
the kink points (adjusted via) and the rate
changes at each kink point.

A significant oversight with these two functions is that they do not accrue
interest based on the current configurations before making changes. This
oversight results in a different interest rate being applied retroactively.
From the last		 call up to any invocation of the configuration-
changing functions, the new settings are incorrectly applied.

Invoke		 before making any changes to the utilization
configuration. Ensure that the change is applied to all vaults. Additionally,
consider merging			 and			 into a single
function to ensure correct correspondence between points and rates.

Recommendation

vault::set-points-util

set-points-util set-points-rate

accrue

accrue-

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

37

ClarityAlliance

[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt

Description
When the DAO pauses the accrue function in the vaults, no accrual occurs
during the paused period. Upon unpausing, the system skips the paused
period by updating the last-update to the current time:

However, this logic overlooks the necessity of calling accrue before
initiating the pause. Failing to do so results in the loss of all pending
interest generated from the last accrue call up to the point of pausing.

Ensure that		 is called within			 only if accrue
is currently active and is about to be paused. Implement this fix across all
vault.

Recommendation
set-points-statesaccrue-

(was-paused (get accrue current))
 (now-unpaused (not (get accrue states))))
;; When unpausing accrue, jump Last-update to now to skip paused period
(if (and was-paused now-unpaused)
 (var-set last-update- stacks-block-time)
 false)

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

38

ClarityAlliance

[M-13] Rounding in Bad Debt Socialization
Causes Debt Mismatches

Description
After a liquidation is executed, if a position has no remaining collateral but
still holds outstanding debt, the system attempts to socialize this residual
debt.

This process is managed by calling					
for each remaining debt asset, passing in the scaled debt amount. This
function converts the scaled value back to an actual amount:

It then calls				 with this actual amount. Inside the
vault, the amount is re-scaled:

Since both conversions round down, the resulting socialized bad debt
becomes slightly smaller than the actual remaining debt of the position.
This effectively erases a small portion of the debt instead of redistributing
it among the vault's borrowers.

Pass the original	 debt amount directly to
		 to avoid unnecessary conversions, and modify
		 to directly reduce the value, instead of applying the
index again.

Recommendation

(actual-debt (/ (* scaled idx) PRECISION)))

(scaled-amount (/ (* amount PRECISION) idx)))

market::socialize-debt-asset

vault::socialize-debt

scaled vault-router:

:socialize-debt

socialize-debt

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

39

ClarityAlliance

[M-14] Precision Loss Leads to Underestimated
Interest Rates

Description
The			 function is currently implemented as follows:

The variables x, y, and z each use a precision of	 , and the function's
result is also expected to maintain this precision.

However, precision is applied separately in the	 and	 steps. In
a simplified form (when both rounding steps round down), the calculation
becomes:

The terms				 effectively discard the lower 8
digits of the	 product, leading to unnecessary precision loss. This
also makes the rounding direction of the product irrelevant.

As a result, derived values such as utilization, and consequently interest
rates, will be underestimated.

Revise the	 implementation to compute simply
when rounding down and			 when rounding up,
without relying on the individual	 and	 functions. Then, extract
the	 ,			 , and		 functions into separate
instances in the codebase where they are used, to avoid the contract
calling overhead for just three lines of extra code.

Recommendation

math::mul-div

x * y / PRECISION * PRECISION / z

/ PRECISION * PRECISION

x * y

1e8

mul div

mul-div

mul-div mul-div-down mul-div-up

mul div

(x * y) / z

(x * y + z - 1) / z

(define-read-only (mul (x uint) (y uint)) (/ (+ (* x y)
 (/ PRECISION u2)) PRECISION))
(define-read-only (div (x uint) (y uint)) (/ (+ (* x PRECISION) (/ y u2)) y))
(define-read-only (mul-div (x uint) (y uint) (z uint)) (div (mul x y) z))

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

40

ClarityAlliance

[M-15] Pyth Price Confidence Interval Is
Not Validated

Description
Prices provided by the Pyth Network include a level of uncertainty,
represented by a confidence interval.

Currently, the		 contract's Pyth integration only validates the
freshness of the price, not the confidence level. It is essential to validate
the confidence level as well to ensure that the price returned by the
network falls within an acceptable range for Granite.

For example, a price for	 might be with a confidence of	 .
In this scenario, the network is uncertain about the exact price, placing it
within a	 range.

Although such a situation would be highly unusual, it is still possible and
could lead to financial losses for users if this price is used in collateral
evaluation.

In the		 contract, implement a minimum confidence threshold
(price/confidence), adjustable by the DAO, to be checked when retrieving
the price. Note that a confidence interval of 0 indicates no spread in price
and should be considered a valid price. Ensure the confidence interval is
checked in the			 function.

Recommendation

market

market

resolve-pyth

STX

[$1, $5]

$3 ± $2

https://docs.pyth.network/price-feeds/best-practices#confidence-intervals

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

41

ClarityAlliance

[M-16] Oracle Freshness Check Issues

Description
Within the	 contract, the oracle price freshness is verified using
the			 function, as shown below:

The function uses a hardcoded maximum staleness check of 120 seconds.
This approach presents two long-term issues:

	գ The protocol cannot set a specific price freshness value for each
oracle or asset type.

	գ The protocol cannot modify the duration, which may be necessary in
extreme situations or during highly volatile periods.

Implement a DAO-gated setter to adjust the price freshness. Additionally,
create a mapping for specific token-price feeds to verify their freshness,
defaulting to a globally set value if not individually specified.

Recommendation

;; Oracle timestamp validation
(define-constant CARDINALITY u120)

(define-private (oracle-timestamp-fresh (ts uint) (prev uint))
 (let ((curr stacks-block-time)
 (delta (- curr ts)))
 (and
 (<= delta CARDINALITY)
 (>= ts prev))))

market

oracle-timestap-fresh

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

42

ClarityAlliance

[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

Description
The	 configuration specifies two parameters,
and			 , which define the minimum and maximum penalty
percentages applicable to liquidated debt.

The final penalty percentage is calculated using the following function:

This implementation assumes that		 will not exceed	 .
However, this assumption is flawed. If		 is greater than ,
the resulting penalty will exceed the maximum allowed value.

During liquidation, the			 function first calculates the
percentage distance between the position's LTV and the partial liquidation
LTV, relative to the full liquidation LTV. This results in			 .
The value is then raised to the power of the configured
parameter, producing		 .

For instance, if a position's LTV slightly surpasses the full liquidation
LTV,			 will already be over 100%. When combined with a
curve exponent of 100% or more (valid range is 50%-400%), the resulting
liquidation factor can exceed 100%, causing the applied penalty to surpass
the intended maximum.

Limit the calculated liquidation penalty to the maximum allowed value.

Example fix:

Recommendation

(define-read-only (calc-liq-factor-bound (liq-factor uint) (bound-min uint)
 (bound-max uint))
 (+ bound-min (contract-call? .math mul-bps liq-factor
 (- bound-max bound-min))))

(define-read-only (calc-liq-factor-bound (liq-factor uint) (bound-min uint)
 (bound-max uint))
- (+ bound-min (contract-call? .math mul-bps liq-factor
- (- bound-max bound-min))))
+ (let (
+ (liq-factor-capped (if (< liq-factor BPS) liq-factor BPS)))
+ (+ bound-min (contract-call? .math mul-bps liq-factor-capped
+ (- bound-max bound-min)))
+)
+)

egroup

liq-factor

liq-factor

liq-factor

BPS

BPS

calc-liq-factor

liq-pct-linear

liq-pct-linear

LIQ-PENALTY-MIN

LIQ-PENALTY-MAX

LIQ-CURVE-EXP

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

43

ClarityAlliance

8.4. Low Findings

[L-01] Non-Standard Vault Withdraw Entry
Point Behavior

Description
In asset-share type smart contract vault systems, the typical entry
points for adding assets to the vault and receiving shares are:

•	 	 -> add assets and receive a calculated amount of shares
•	 	 -> specify a target amount of shares, and the assets to

deposit are calculated

Similarly, when removing assets from a vault, the expected functions
are:

•	 		-> remove a specific amount of assets, and the required
amount of shares is calculated

•	 	 -> remove a specific amount of shares, and the received
assets are calculated

The current vault implementation correctly handles the 		
function. However, the 	 function operates like a 		
function, with the 	 variable representing a share amount rather
than an asset amount.

This ambiguity could lead to issues for existing DeFi third-party
integrators, potentially causing integration problems.

deposit

Recommendation
Rename the 			 function to 	 across all vault
instances. If a 		 function is intended, modify the logic to
accept asset amounts as input instead of shares, or create a separate
function for this purpose.

vault:withdraw

mint

withdraw

redeem

deposit

withdraw redeem

amt

redeem

withdraw

https://github.com/Zest-Protocol/zest-v2/blob/3c1f2ebe178081d118cd9005eddb02b97f6aaf95/contracts/vault/vault.clar#L156

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

44

ClarityAlliance

[L-02] Incorrect Return Value on Vault
Operations

Description
When a user deposits into the vault, they call			 , and
when they withdraw funds, they call 			 .

In 3 out of the 6 vault contracts, these functions incorrectly return the
updated total assets amount instead of the amount of assets withdrawn
or the shares received.

Specifically, in the		 , 		 , and 			
contracts, the		 function returns the new total assets ()
when it should return 		 . Similarly, the		 function returns
the new total assets instead of the	 variable.

This inconsistency can cause issues when integrating with third parties,
as some vaults return the correct amount while others do not.

Recommendation
In the		 , 		 , and 	 contracts, modify the 	
	 and	 functions to always return		 .

vault::deposit

delta

vault::withdraw

vault-usdc vault-usdh vault

withdraw

deposit

deposit

inkind

inkind

vault-usdc vault-usdh vault

withdraw inkind

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

45

ClarityAlliance

[L-03] Severe Lack of Emitted Events

Description
The entire codebase is completely devoid of any 	 statements.

This significantly restricts off-chain monitoring and integration
capabilities.

Recommendation
Incorporate print events into all public functions and entry points within
the codebase.

A standardized print/event structure can be implemented to facilitate
off-chain processing. An example of such a structure is:

print

(print {
 action: “<function-name or action>”,
 caller: <caller>,
 data: {
 <key1>: <value1>,
 <key2>: <value2>,
 ...
 <keyN>: <valueN>
 }
})

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

46

ClarityAlliance

[L-04]					 Function is
Unusable

Description
The 			 function returns the combined number
of assets that are both borrowable and usable as collateral. This
information is not useful for third parties because it does not indicate
the total number of assets in the system.

Consider the following example:

•	 10 assets
•	 5 enabled as debt
•	 10 enabled as collateral
•	 				 returns 15

A third-party integrator cannot determine whether there are 15 assets,
all enabled as either collateral or debt, or if there are 8 assets, with
7 enabled as both debt and collateral, and 1 enabled in only one
category.

assets::get-nr-enabled

Recommendation
Either remove the function entirely, including all related 	 logic, or
modify it to return a tuple containing: the total asset count, the count of
assets enabled as debt, and the count of assets enabled as collateral.

pack

assets::get-nr-enabled

assets::get-nr-enabled

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

47

ClarityAlliance

[L-05] Small Loans May Be Unprofitable to
Liquidate

Description
A common issue in borrowing and lending protocols is the potential
unprofitability of liquidating small loans.

When the borrowed amount and the collateral deposited are too
low, the discounted collateral a liquidator receives from a liquidation
might not be sufficient to cover the execution cost of the liquidation
operation itself.

In such cases, there is no incentive to liquidate loans that are becoming
insolvent, leading the protocol to accumulate interest and, eventually,
bad debt.

The issue of small positions has been widely discussed in public
forums. Protocols generally adopt one of three approaches:

1.	 Implement a minimum borrow amount to ensure users have a
sufficiently large amount of backing collateral.

2.	 Require borrowers to deposit a gas compensation guarantee to be
used in case of liquidation. This approach is employed by Liquity
V2.

3.	 Maintain the system as it is. Small liquid positions will accumulate
over time, but in practice, these small positions have not been
extensively proven to affect the markets. If necessary, governance
itself would liquidate them at a loss. For example, both Euler v1 and
Euler v2 follow this approach.

Recommendation
As mentioned in the description, potential solutions include
implementing a minimum borrow amount or requiring borrowers to
deposit a gas compensation. However, this would increase code
complexity and can be added later if actually needed.

Therefore, the recommendation is to acknowledge the possibility of
this issue and, if necessary, have governance liquidate small positions
itself. This comes with the trade-off of paying fees to liquidate
positions.

https://github.com/liquity/bold/blob/main/README.md#liquidation-gas-compensation
https://github.com/liquity/bold/blob/main/README.md#liquidation-gas-compensation
https://www.openzeppelin.com/news/euler-vault-kit-evk-audit#lack-of-incentives-to-liquidate-small-positions

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

48

ClarityAlliance

[L-06] Market ZToken Data Insertion Overhead

Description
In the 		 contract, the function is-ztoken is used to determine if
a token is a Zest vault token. This function relies on the ztoken-assets-
ids map, which contains all the IDs hardcoded directly in the contract
root.

Since the ztokens are precisely known at deployment, there is no need
to add them to a map, which incurs a read count penalty on every
collateral accrual. This results in significant overhead that can be
optimized.

Recommendation
Given that the project has accepted the need to redeploy the 		
contract for any new vault, it is unnecessary to add these values to a
map that will remain unchanged within the current contract. Instead, a
pure check can be implemented as follows:

market

market

(define-map ztoken-asset-ids uint bool)

;; Initialize with current ztoken asset IDs
;; NOTE: These IDs depend on the asset registration order in assets.clar
(map-insert ztoken-asset-ids u5 true) ;; vault-stx (zSTX)
(map-insert ztoken-asset-ids u6 true) ;; vault-sbtc (zsBTC)
(map-insert ztoken-asset-ids u7 true) ;; vault-ststx (zstSTX)
(map-insert ztoken-asset-ids u8 true) ;; vault-usdc (zUSDC)
(map-insert ztoken-asset-ids u9 true) ;; vault-usdh (zUSDH)

(define-private (is-ztoken (aid uint))
 (default-to false (map-get? ztoken-asset-ids aid)))

;;

 NOTE: These ztoken asset IDs depend on the asset registration order in assets.clar

(define-constant zSTX u5) ;; vault-stx

(define-constant zsBTC u6) ;; vault-sbtc

(define-constant zstSTX u7) ;; vault-ststx

(define-constant zUSDC u8) ;; vault-usdc

(define-constant zUSDH u9) ;; vault-usdh

(define-constant ztokens (list zSTX zsBTC zstSTX zUSDC zUSDH))

(define-private (is-ztoken (aid uint))

 (is-some (index-of? ztokens aid)))

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

49

ClarityAlliance

[L-07] Limited Precision in Liquidation Exponent
Calculation

Description
The 			 parameter is designed to control the
steepness of the liquidation penalty curve with a precision of four
decimal places. However, the precision is effectively lost due to the
way the function
performs its calculations:

In this logic, 	 is always divided by 	 before being applied.

When configured in the egroup settings, this parameter is constrained
to the interval
	 . Consequently, only a few discrete exponent values 		
					 yield distinct outcomes.

This effectively reduces the intended precision of 			 ,
limiting the ability to fine-tune the penalty amounts based on the LTV
level.

,

Recommendation
If maintaining the original precision is deemed valuable despite added
complexity, the current formula should be modified to support higher
precision. Alternatively, this issue should be acknowledged.

LIQ-CURVE-EXPONENT

reserve-calculator::calc-liq-factor-exp

(define-read-only (calc-liq-factor-exp (factor uint) (exp uint))
 (if (is-eq exp BPS)
 factor
 (if (> exp BPS)
 (/ (pow factor (/ exp BPS)) (pow BPS (- (/ exp BPS) u1)))
 (sqrti (* factor BPS)))
))

exp BPS

[MAX-FACTOR-MUL, MAX-FACTOR-DENOM] = [5000, 40000] =

[50%, 400%]

(5000, 10000, 20000, 30000, 40000)

LIQ-CURVE-EXPONENT

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

50

ClarityAlliance

8.5. QA Findings

[QA-01] Limiting Vault Borrow-Repay
Recipient Interface

Description
 The current market-vault borrowing mechanism interfaces operate by
having the market contracts call either the 		 or
		 functions of the underlying 	 contract.

A limitation of the existing setup is that the recipient of the call is
always considered to be the 		 . This imposes constraints
on all integrating contracts, as the sender must remain as intended
through any third-party integration pipeline.

This results in a more restrictive model and may increase the difficulty
of future development.

Recommendation
Modify the vault’s 		 and 		 functions to
accept an 	 parameter, which would serve as the 		
for a borrow and the benefactor for a		 . Additionally, update the 	
	 contract to utilize this interface.

system-repay

tx-sender

system-borrow

vault

system-borrow system-repay

account recipient

repay

market

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

51

ClarityAlliance

[QA-02] Limiting FlashLoan Design

Description
The current flashloan functionality of the vault restricts users to
passing only a 34-byte buffer type argument named 	 .

This limitation could lead to integration challenges for third-party
protocols, as they are unable to pass dynamic values through the
flashloan functionality to the callback. Consequently, they are
compelled to pre-save these values on the callback contracts.

Recommendation
To enhance the general applicability of flashloans, consider replacing
the optional memo with an optional 		 or 	 parameter,
allowing for at least 4k bytes.

memo

calldata data

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

52

ClarityAlliance

[QA-03] Eliminate Redundant		
Blocks in		 Blocks

Description
Across the codebase, 		 blocks are unnecessarily added after 	
 declarations. This is redundant because blocks naturally
allow subsequent statements without needing a	 block. This
pattern is prevalent in almost all contracts, and all instances of these 	
	 blocks can be removed.

Recommendation
Remove the 	 blocks throughout the codebase and integrate the
inner logic directly after the variable declarations.

begin
let

begin

begin

begin

let let

begin

let

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

53

ClarityAlliance

[QA-04] Improve Switch-Like Statements

Description
The codebase contains several instances of switch-like statements
implemented using multiple 	 	 clauses.

From a formatting perspective, instead of using 	 with
continuous rightward indentation:

it is preferable to format them on separate lines, like this:

Alternatively, you can create a switch equivalent using inverted 		
 	 . For example:

Recommendation
Revise the 	 switch-like clauses to a more comprehensible
form, as suggested above.

These improvements can be particularly beneficial for the
contract.

if-else

if-else

if-else

(if (is-eq type TYPE-PYTH)
 (resolve-pyth ident)
 (if (is-eq type TYPE-DIA)
 (resolve-dia ident)
 ERR-TYPE)))

(define-private (resolve-price (type (buff 1)) (ident (buff 32)))
 (if (is-eq type TYPE-PYTH) (resolve-pyth ident)
 (if (is-eq type TYPE-DIA) (resolve-dia ident)
 ERR-TYPE)))

assets!

(define-private (resolve-price (type (buff 1)) (ident (buff 32)))
 (begin
 (asserts! (not (is-eq type TYPE-PYTH)) (resolve-pyth ident))
 (asserts! (not (is-eq type TYPE-DIA)) (resolve-dia ident))
 ERR-TYPE
)
)

vault-router

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

54

ClarityAlliance

[QA-05] Severe Violation of Single
Responsibility Principle

Description
Over the years, several standard programming patterns have been
recognized for producing good, easy-to-maintain, and reliable code.
One such fundamental pattern is the Single Responsibility Principle
(SRP), which dictates that certain parts of the codebase should be
responsible for only one task.

Throughout the codebase, there are multiple instances of severe
SRP violations. These not only decrease code readability but also
significantly increase the difficulty of maintenance and extension.

A few examples include:

•	 A single function is used for both adding and removing debt, where
the caller specifies whether to add or subtract the debt:

					 .
•	 A single function is used for both adding and removing user

collateral, where the caller specifies whether to add or subtract the
collateral amount:					 .

•	 In the market vault, a single function handles both sending and
receiving asset tokens, where the caller passes a boolean to
indicate the intention to receive tokens: .

•	 In the vault, a single function manages both sending and receiving
underlying tokens, where the caller passes a boolean to indicate
the intention to receive tokens:			 .

Additionally, due to the design of Clarity smart contracts, supporting
dual operational roles per function in the		 case
increases almost all possible execution costs, further degrading the
quality of the codebase.

market-vault::insert-debt-scaled

market-value::insert-collateral

market-vault::transfer

vault::utransfer

Recommendation
Implement separate functions for each distinct functionality. If there is
common functionality within the resulting split functions, refactor that
code logic into common functions and utilize them accordingly.

market-vault

https://en.wikipedia.org/wiki/Single-responsibility_principle

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

55

ClarityAlliance

[QA-06] Inline All Pack and Mathematical
Operations

Description
In Clarity, invoking external contracts leads to a notable increase in
read count.

There are several operations within the codebase that repeatedly call
either the 	 or 	 contracts, significantly increasing the block
cost overhead.

Recommendation
Inline as many operations as possible from the 	 and 		
contracts.

pack math

pack math

https://github.com/stacks-network/stacks-core/blob/master/stackslib/src/chainstate/stacks/boot/costs-3.clar#L337-L345
https://github.com/stacks-network/stacks-core/blob/master/stackslib/src/chainstate/stacks/boot/costs-3.clar#L337-L345

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

56

ClarityAlliance

[QA-07] Debt Cap Versus Borrow Cap
Considerations

Description
The current system logic permits each vault to maintain a specific
debt amount at any given time. Debt encompasses both the borrowed
principal and the accrued interest.

By linking the protocol contract’s capping mechanism to the total debt
rather than just the borrowed principal, situations may arise where only
a portion of the underlying assets is utilized due to significant debt
accrual.

Consider the scenario of a USDC vault with:

•	 100 million in assets
•	 50 million in borrowed principal
•	 a 75 million debt cap
•	 30 million in interest on the 50 million borrowed

In this situation, although 50% of the assets remain unborrowed, no
additional borrowing can occur because the total debt has reached 80
million, surpassing the debt cap.

Recommendation
Evaluate whether a debt cap or a borrow cap is more suitable from a
business logic perspective. If the current implementation is intentional,
acknowledge this issue; otherwise, consider changing the cap to a
borrow cap instead of a debt cap.

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

57

ClarityAlliance

[QA-08] Typographical Error

Description
Within the 	 contract, there is a typographical error in the 		
			 constant. The term 	 should be
corrected to 	 .

These types of errors can diminish code consistency and slightly hinder
comprehension.

Recommendation
Correct the identified typo.

oracle

STSTX-RAITO-DECIMALS RAITO

RATIO

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

58

ClarityAlliance

[QA-09] Optimization of Accrue for Liquidity
and Index Reads

Description
The 		 function is designed to return the index and
liquidity index after updating them, if necessary. However, the current
implementation is not optimal.

The public 	 function is structured as follows:

In this setup, the 	 and 	 functions each increase the read
count to return the updated indexes. However, the 		 function
already determines, updates, and saves these values when necessary,
but it only returns 	 .

Recommendation
It is recommended to modify the 	 function to return the
updated interest and liquidity indexes directly, eliminating the need for
the public 	 function to re-read them.

vault::accrue

(define-public (accrue)
 (begin
 (accrue-)
 (ok { index: (index), lindex: (lindex) })))

index lindex

accrue-

true

accrue-

accrue

accrue

Security Review

Zest Protocol
v2

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] FlashLoan Vulnerability: Potential for Artificial
Vault Share Inflation and Vault Draining
[C-02] Repaid Interest Is Not Accounted For

8.2. High Findings
[H-01] Incorrect Rounding Direction When Calculating
Vault Shares or Assets
[H-02] FlashLoan Balance Check Issue
[H-03] FlashLoan Fees Are Lost
[H-04] Share Price Manipulation Allows Token Theft
[H-05] Missing Interest Accrual When Removing
Collateral
[H-06] Vault Accrual Through The Market Contract
Issue
[H-07] Borrowers Can Prevent Bad Debt Socialization
[H-08] Liquidated Debt Incorrectly Socialized as Bad
Debt
[H-09] Disabled Collaterals Can Be Used To Extract
Liquidity
[H-10] Limiting and Bypassable FlashLoan Fee
Payment Check
[H-11] Rounding Inconsistencies

8.3. Medium Findings
[M-01] Vaults Are Not SIP-10 Compliant
[M-02] Inaccurate Conversion Results Due to Missing
Interest Accrual
[M-03] Vaults Are Tied to the Router Contract
[M-04] Disabled Collateral Cannot Be Withdrawn
[M-05] Protocol Pausing Issues
[M-06] Governance Proposals Never Expire
[M-07] DAO Can Set Invalid Multisig Configuration and
Disrupt Governance
[M-08] Vault Availability Implementation Issue
[M-09] Liquidation Fails When Borrowers Have No
Debt and No Collateral
[M-10] Fee Reserve Percentage Change Is Applied
Retroactively on Pending Debt
[M-11] Utilization Configuration Changes Are Applied
Retroactively on Pending Debt
[M-12] Accrue Must Be Called Before Pausing to
Prevent Loss of Pending Debt
[M-13] Rounding in Bad Debt Socialization Causes
Debt Mismatches
[M-14] Precision Loss Leads to Underestimated
Interest Rates
[M-15] Pyth Price Confidence Interval Is Not Validated
[M-16] Oracle Freshness Check Issues
[M-17] Liquidation Penalty Can Exceed Maximum
Allowed

8.4. Low Findings
[L-01] Non-Standard Vault Withdraw Entry Point
Behavior
[L-02] Incorrect Return Value on Vault Operations
[L-03] Severe Lack of Emitted Events
[L-04] assets::get-nr-enabled Function is Unusable
[L-05] Limiting and Bypassable FlashLoan Fee
Payment Check
[L-06] Market ZToken Data Insertion Overhead
[L-07] Limited Precision in Liquidation Exponent
Calculation

8.5. QA Findings
[QA-01] Limiting Vault Borrow-Repay Recipient
Interface
[QA-02] Limiting FlashLoan Design
[QA-03] Eliminate Redundant begin Blocks in let Blocks
[QA-04] Improve Switch-Like Statements
[QA-05] Severe Violation of Single Responsibility
Principle
[QA-06] Inline All Pack and Mathematical Operations
[QA-07] Debt Cap Versus Borrow Cap Considerations
[QA-08] Typographical Error
[QA-09] Optimization of Accrue for Liquidity and Index
Reads
[QA-10] Cleanup Codebase Functions

2
3
4
4
5
5
5
5
6
7
8
11
11

12
13
13

14
15
16
17

18

20
21

22

23

25
26
26
27

28
29
30
31
32

33
34

35

36

37

38

39

40
41
42

43
43

44
45
46
47

48
49

50
50

51
52
53
54

55
56
57
58

59

59

ClarityAlliance

[QA-10] Cleanup Codebase Functions

Description
The codebase employs several unconventional naming
conventions and implementation choices:

•	 Private function names and some variables have a trailing hyphen
•	 Instead of directly calling 		 to retrieve a local variable, a

redundant wrapper is used that merely calls 	 .
•	 There are identical versions of functions that exist as both public

and private.

These choices significantly impair code readability.

Recommendation
Eliminate the trailing hyphen in naming, remove the redundant getter
wrappers, and eliminate any duplicated functions.

var-get

var-get

