ZEST PROTOCOL v2 (UPGRADE) SECURITY REVIEW

Conducted by:
KRISTIAN APOSTOLOV, ALIN BARBATEI (ABA), SILVEROLOGIST

DECEMBER 3RD, 2025

|
CONTENTS

1. About Clarity Alliance 2
2. Disclaimer 3
3.Introduction 4 M :
4. About Zest Protocol 4 1- About Clarlty AIIIanCe
5. Risk Classification 5
5.1.Impact 5
SEHALGLI) < Clarity Alliance is a team of expert whitehat hackers specialising in
5.3. Action required for severity levels 5 .
6. Security Assessment Summary 6 securing prOtOCO'S on Stacks.
7.Executive Summary 7
8. Summary of Findings 8
8.1. Critical Findings _ 1 They have disclosed vulnerabilities that have saved millions in
[C-01] stSTX Vault Cannot Withdraw Tokens 10
8.2 High Findings 12 live TVL and conducted thorough reviews for some of the largest
[H-01] Efficiency Groups Cannot Be Updated 12 .
[H-02] DAO Implementation Cannot Be Updated 13 prO]eCts across the Stacks eCOSyStem'
[H-03] Disabled Debt Not Accounted For In Notional 14
Debt
e e DAt LRt DR st O Learn more about Clarity Alliance at clarityalliance.org.
Egroup LTV Downgrading
8.3.Medium Findings 17

[M-01] Positions With An Empty Safe Mask Are Not 17
Fully Supported
[M-02] Missing Grace Period After Vault Repayment 18

Pause

[M-03] Lack of Slippage on Liquidations 19
[M-04] Ambiguous EGroup Defaulting Logic 20
[M-05] Dangerous Market Account Behavior 23

[M-06] Inability to Liquidate Positions Using zToken 30
Collateral Within the Same Vault FlashLoan Context

[M-07] Repay Health Check May Block Insolvent 31
Users From Avoiding a Full Liquidation

8.4.Low Findings 33
[L-01] Threshold Changes Can Invalidate Pending 33
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require 34
Sanitization

[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35
4 Security Enhancements

[L-04] Reducing Collateral Liquidation LTV Ratios 38

May Instantly Liquidate Users

[L-05] Significant Absence of Emitted Events 39

[L-06] Maximum Liquidation Penalty Is Not Capped 40

[L-07] Avoid Using Unwrap Panic a1
8.5. QA Findings 42

[QA-01] Inline Reserve Calculator Contract 42

[QA-02] Missing Flash Loan Features 43

[QA-03] Optimization of Market Asset Retrieval 44

[QA-04] Eliminate Redundant Contract Caller 45

Authentication in Vault DAO Operations

[QA-05] Function Naming Ambiguities Severely 46

Decrease Code Readability

[QA-06] General Code Style Improvements a7

[QA-07] Optimization for Enabling and Disabling 50

Assets

[QA-08] Promote Debug Getters in eGroup to 51

Production

[QA-09] Simplify Nonce to a uint to Reduce 52

Complexity

[QA-10] Code Constants Usage Ambiguities 53

[QA-11] Simplification of Retrieving Liquidation 55

Position

[QA-12] Optimization of Borrower Scaled Debt 56

Retrieval

[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

http://clarityalliance.org

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

N O oo abhbhwdN

=
NNOO“

13
14

15

17
17

18

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

2. Disclaimer

This report is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. This report is not, nor
should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts
Clarity Alliance to perform a security assessment.

This report does not provide any warranty or guarantee regarding
the absolute bug-free nature of the technology analyzed, nor do
they provide any indication of the technologies proprietors, business,
business model or legal compliance.

This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report
in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive
assessing process intending to help our customers increase the
quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level
of ongoing risk. Clarity Alliance’s position is that each company and
individual are responsible for their own due diligence and continuous
security. Clarity Alliance’s goal is to help reduce the attack vectors and
the high level of variance associated with utilizing new and consistently
changing technologies, and in no way claims any guarantee of security
or functionality of the technology we agree

to analyze.

The assessment services provided by Clarity Alliance are subject to
dependencies and under continuing development. You agree that your
access and/or use, including but not limited to any services, reports,
and materials, will be at your sole risk on an as-is, where-is, and as-
available basis.

Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. The assessment reports
could include false positives, false negatives, and other unpredictable
results. The services may access, and depend upon, multiple layers of
third parties. Notice that smart contracts deployed on the blockchain
are not resistant from internal/external exploit. Notice that active
smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Clarity Alliance does
not guarantee the explicit security of the audited smart contract,
regardless of the verdict.

|
CONTENTS

1. About Clarity Alliance 2
2. Disclaimer 3
3.Introduction 4 :
4. About Zest Protocol 4 3 . I ntrOd uctlon
5. Risk Classification 5
5.1.Impact 5
5.2.Likelihood 5 A time-boxed security review of Zest Protocol, where Clarity Alliance
5.3. Action required for severity levels 5
6. Security Assessment Summary 6 reviewed the scope and provided insights on improving the protocol.
7.Executive Summary 7
8. Summary of Findings 8
8.1. Critical Findings 10
[C-01] stSTX Vault Cannot Withdraw Tokens 10
0 4. About Zest Protocol
[H-01] Efficiency Groups Cannot Be Updated 12
[H-02] DAO Implementation Cannot Be Updated 13
EH-bOSIDisabled Debt Not Accounted For In Notional 14 Zest Protocol is the DeFi protocol built for Bitcoin. Fully on-chain and
ebt
[H-04] Self-Liquidation Market Draining Attack via 15 open-source, itis bUIIdlng the future of Bitcoin finance.
Egroup LTV Downgrading
8.3.Medium Findings 17
l[c"u"”'y";]uzgjgzgswnh A EES NG L We've launched Zest Protocol Borrow, enabling users to unlock liquidity
|[:‘M-02] Missing Grace Period After Vault Repayment 18 by borrowing against their assets.
ause
[M-03] Lack of Slippage on Liquidations 19
[M-04] Ambiguous EGroup Defaulting Logic 20
[M-05] Dangerous Market Account Behavior 23 Live on Stacks—the leading Bitcoin Layer 2—Zest is now the top DeFi
[M-06] Inabiity to Liguicate Positions Using zToken 30 protocol on the network. Through the Stacks Market, users can deposit
Collateral Within the Same Vault FlashLoan Context . .
[M-07] Repay Health Check May Block Insolvent 31 idle assets such as STX, sBTC, stSTX, USDC, and others to earn yield,
Users From Avoiding a Full Liquidation . .
8.4.LowFindings 33 accumulate points, and access overcollateralized loans..
[L-01] Threshold Changes Can Invalidate Pending 33
Executable Proposals
o i 34
g:nﬁ;:;“n” Names, Symbols, and URI Require Zest exists to make Bitcoin productive—every sat of it. The goal is to
el s Ve ey Rl s By =9 build a vibrant borrowing and lending ecosystem around Bitcoin as an
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios 38 asset.
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events 39
[L-06] Maximum Liquidation Penalty Is Not Capped 40
[L-07] Avoid Using Unwrap Panic a1
8.5. QA Findings 42
[QA-01] Inline Reserve Calculator Contract 42
[QA-02] Missing Flash Loan Features 43
[QA-03] Optimization of Market Asset Retrieval 44
[QA-04] Eliminate Redundant Contract Caller 45
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely 46
Decrease Code Readability
[QA-06] General Code Style Improvements a7
[QA-07] Optimization for Enabling and Disabling 50
Assets
[QA-08] Promote Debug Getters in eGroup to 51
Production
[QA-09] Simplify Nonce to a uint to Reduce 52
Complexity
[QA-10] Code Constants Usage Ambiguities 53
[QA-11] Simplification of Retrieving Liquidation 55
Position
[QA-12] Optimization of Borrower Scaled Debt 56
Retrieval
[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance 2
2. Disclaimer 3 R' k I oo .
3. Introduction 4 C f
4. About Zest Protocol 4 5' IS aSSI Icatlon
5. Risk Classification 5
5.1.Impact 5
5.2. Likelihood 5 . q .
5.3. Action required for severity levels 5 Severity Impact: High | Impact: Medium | Impact: Low
6. Security Assessment Summary 6
7-Executive Summary 7 Likelihood: High Critical High Medium
8. Summary of Findings 8
8.1. Critical Findings 10 . . .) .
[C-01] stSTX Vault Cannot Withdraw Tokens 10 Likelihood: Medium | High Medium Low
8.2.High Findings 12
[H-01] Efficiency Groups Cannot Be Updated 12 : . . f
[H-02] DAO Implementation Cannot Be Updated 13 Likelihood: Low Medium Low Low
[H-03] Disabled Debt Not Accounted For In Notional 14
Debt
[H-04] Self-Liquidation Market Draining Attack via 15
Egroup LTV Downgrading

8.3.Medium Findings 17 5. 1 I m pa Ct
[M-01] Positions With An Empty Safe Mask Are Not 17
Fully Supported
[M-02] Missing Grace Period After Vault Repayment 18 . . o . .
Pause o High - leads to a significant material loss of assets in the

[M-03] Lack of Slippage on Liquidations 19 . I
[M-04] Ambiguous EGroup Defaulting Logic 20 protocol or SIgnlflcantIy harms a group of users.
[M-05] Dangerous Market Account Behavior 23
[M-06] Inability to Liquidate Positions Using zToken 30 .
Collateral Within the Same Vault FlashLoan Context ° Medium - only a small amount of funds can be lost (SUCh as
[M-07] Repay Health Check May Block Insolvent 31 . . .
Users From Avoiding a Full Liquidation leakage of value) or a core functionality of the protocol is
8.4.Low Findings 33
[L-01] Threshold Changes Can Invalidate Pending 33 affected.
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require 34 . . .
Sanitization e Low - can lead to any kind of unexpected behavior with some
[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35 , i . , .
4 Security Enhancements of the protocol’s functionalities that’s not so critical.
[L-04] Reducing Collateral Liquidation LTV Ratios 38
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events 39
[L-06] Maximum Liquidation Penalty Is Not Capped 40
[L-07] Avoid Using Unwrap Panic M M M
8.5. QA Findings 42 5'2 LIkeIIhOOd
[QA-01] Inline Reserve Calculator Contract 42
[QA-02] Missing Flash Loan Features :i
[QA-03] Optimization of Market Asset Retrieval B B B B B
FEaT el s 45 * High - attack path is possible with reasonable assumptions
Authentication in Vault DAO Operations H. _ H T+ H
TPAIR: r E d m that mimic on-chain conditions, and the cost of the attack is
Decrease Code Readabilty relatively low compared to the amount of funds that can be
[QA-06] General Code Style Improvements a7
[QA-07] Optimization for Enabling and Disabling 50 stolen or lost.
Assets
[QA-08] Promote Debug Getters in eGroup to 51
Production . L. . ..
[QA-09] Simplify Nonce to a uint to Reduce 52 « Medium - only a conditionally incentivized attack vector, but
Complexity . . .
[QA-10] Code Constants Usage Ambiguities 53 still relatlvely Ilkely
[QA-11] Simplification of Retrieving Liquidation 55
Position
N imization of 56 . . .
el « Low - has too many or too unlikely assumptions or requires a
[QA-13] Improvements Needed for Mask Market 57

significant stake by the attacker with little or no incentive.

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment

[QA-16] Enhance Market Contract External Interface

(QA-17 reate Merket Trt &2 5.3 Action required for severity levels

60

[QA-18] Implement a Majority Rule-Based Multisig 63

[QA-19] Integrate Max Staleness into Asset Oracle 64

Data Entry

m-Z?lRemove Unused Market Contract Code 65 o Critical - Must fix as soon as possible (if already deployed)
ifacts

[QA-21] Isolate stSTX Price Resolution from 66 o High - Must fix (before deployment if not already deployed)

resolve-ztoken

¢ Medium - Should fix
e Low - Could fix

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

CONTENTS

1. About Clarity Alliance
2.Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-071 Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

6. Security Assessment Summary

Scope

The following contracts, located in the zest-core repository, were
in the scope of the security review:

. dao/dao-multisig.clar

. dao/dao-executor.clar

. dao/dao-treasury.clar

. dao/traits.clar

. market/market.clar

. market/market-vault.clar
e registry/egroup.clar

° registry/assets.clar

° registry/reserve-calculator.clar
. vault/vault-stx.clar

. vault/vault-sbtc.clar

. vault/vault-ststx.clar

. vault/vault-usdc.clar

. vault/vault-usdh.clar

. vault/traits.clar

Initial Commit Reviewed:
80f5da77fbcb917958a0e3f64c4bb0e87832492b

Intermediate Commits Reviewed:
496f774576c6e2aa42ee6a634cd6daf94060f0d0

eb99c6f8acf89b6d86ede97173179a8a8b1e25¢c8

Final Commit After Remediations:
fab7cdf569b4165b2c0bd47fd7{f46717d5e8b43

https://github.com/Zest-Protocol/zest-core
https://github.com/Zest-Protocol/zest-core/tree/80f5da77fbcb917958a0e3f64c4bb0e87832492b
https://github.com/Zest-Protocol/zest-core/commit/496f774576c6e2aa42ee6a634cd6daf94060f0d0
https://github.com/Zest-Protocol/zest-core/tree/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8
https://github.com/GraniteProtocol/core-v1/pull/18/commits/2f3dc203a4de4359f69598f8d5e3b0d05845de3c
https://github.com/Zest-Protocol/zest-core/commit/fab7cdf569b4165b2c0bd47fd7ff46717d5e8b43

|
CONTENTS

1. About Clarity Alliance 2 .
3 7. Executive Summary
3. Introduction 4
4. About Zest Protocol 4
5'“':':?::22“"“ : Over the course of the security review, Kristian Apostolov, Alin
5.2.Likelihood 5 Barbatei (ABA), Silverologist engaged with - to review Zest Protocol.
5.3. Action required for severity levels 5
B A e e 6 In this period of time a total of 40 issues were uncovered.
7.Executive Summary 7
8. Summary of Findings 8
8.1. Critical Findings 10
[C-01] stSTX Vault Cannot Withdraw Tokens 10
8.2.High Findings 12
[H-01] Efficiency Groups Cannot Be Updated 12 PfOtOCOl SU m ma ry
[H-02] DAO Implementation Cannot Be Updated 13
[H-03] Disabled Debt Not Accounted For In Notional 14
pebt o , ‘ Protocol Name Zest Protocol
[H-04] Self-Liquidation Market Draining Attack via 15
Egroup LTV Downgrading
8.3.Medium Findings 17 Date December 3rd, 2025
[M-01] Positions With An Empty Safe Mask Are Not 17
Fully Supported
[M-02] Missing Grace Period After Vault Repayment 18
Pause
[M-03] Lack of Slippage on Liquidations 19
[M-04] Ambiguous EGroup Defaulting Logic 20
[M-05] Dangerous Market Account Behavior 23
[M-06] Inability to Liquidate Positions Using zToken 30
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent 31
Users From Avoiding a Full Liquidation
8.4.Low Findings 33
[L-01] Threshold Changes Can Invalidate Pending 33 H d H C
Executable Proposals Fln Ings Ount
[L-02] Vault Names, Symbols, and URI Require 34
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35 .
4 Security Enhancements Severlty Amount
[L-04] Reducing Collateral Liquidation LTV Ratios 38
May Instantly Liquidate Users Critical 1
[L-05] Significant Absence of Emitted Events 39
[L-06] Maximum Liquidation Penalty Is Not Capped 40
[L-07] Avoid Using Unwrap Panic a1 ngh 4
8.5. QA Findings 42
[QA-01] Inline Reserve Calculator Contract 42 .
[QA-02] Missing Flash Loan Features 43 Medium 7
[QA-03] Optimization of Market Asset Retrieval 44
[QA-04] Eliminate Redundant Contract Caller 45
Authentication in Vault DAO Operations Low 7
[QA-05] Function Naming Ambiguities Severely 46
Decrease Code Readability
[QA-06] General Code Style Improvements a7 QA 21
[QA-07] Optimization for Enabling and Disabling 50
Assets . .
[QA-08] Promote Debug Getters in eGroup to 51 TOtaI FlndlngS 40
Production
[QA-09] Simplify Nonce to a uint to Reduce 52
Complexity
[QA-10] Code Constants Usage Ambiguities 53
[QA-11] Simplification of Retrieving Liquidation 55
Position
[QA-12] Optimization of Borrower Scaled Debt 56
Retrieval
[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance 2
2. Disclaimer 3
3. Introduction 4
4. About Zest Protocol 4
5. Risk Classification 5
5.1.Impact 5
5.2. Likelihood 5
5.3. Action required for severity levels 5
6. Security Assessment Summary 6
7.Executive Summary 7
8. Summary of Findings 8
8.1. Critical Findings 10
[C-01] stSTX Vault Cannot Withdraw Tokens 10
8.2.High Findings 12
[H-01] Efficiency Groups Cannot Be Updated 12
[H-02] DAO Implementation Cannot Be Updated 13
[H-03] Disabled Debt Not Accounted For In Notional 14
Debt
[H-04] Self-Liquidation Market Draining Attack via 15
Egroup LTV Downgrading
8.3.Medium Findings 17

[M-01] Positions With An Empty Safe Mask Are Not 17
Fully Supported
[M-02] Missing Grace Period After Vault Repayment 18

Pause

[M-03] Lack of Slippage on Liquidations 19
[M-04] Ambiguous EGroup Defaulting Logic 20
[M-05] Dangerous Market Account Behavior 23

[M-06] Inability to Liquidate Positions Using zToken 30
Collateral Within the Same Vault FlashLoan Context

[M-07] Repay Health Check May Block Insolvent 31
Users From Avoiding a Full Liquidation

8.4.Low Findings 33
[L-01] Threshold Changes Can Invalidate Pending 33
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require 34
Sanitization

[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35
4 Security Enhancements

[L-04] Reducing Collateral Liquidation LTV Ratios 38

May Instantly Liquidate Users

[L-05] Significant Absence of Emitted Events 39

[L-06] Maximum Liquidation Penalty Is Not Capped 40

[L-07] Avoid Using Unwrap Panic a1
8.5. QA Findings 42

[QA-01] Inline Reserve Calculator Contract 42

[QA-02] Missing Flash Loan Features 43

[QA-03] Optimization of Market Asset Retrieval 44

[QA-04] Eliminate Redundant Contract Caller 45

Authentication in Vault DAO Operations

[QA-05] Function Naming Ambiguities Severely 46

Decrease Code Readability

[QA-06] General Code Style Improvements a7

[QA-07] Optimization for Enabling and Disabling 50

Assets

[QA-08] Promote Debug Getters in eGroup to 51

Production

[QA-09] Simplify Nonce to a uint to Reduce 52

Complexity

[QA-10] Code Constants Usage Ambiguities 53

[QA-11] Simplification of Retrieving Liquidation 55

Position

[QA-12] Optimization of Borrower Scaled Debt 56

Retrieval

[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

Summary of Findings

ID Title Severity Status
[C-01] stSTX Vault Cannot Withdraw Tokens Resolved
_ Efficiency Groups Cannot Be Hiah
[H-01] Updated Resolved
_ DAO Implementation Cannot Be Hiah
[H-02] Updated Resolved
Disabled Debt Not Accounted For In ;
- High
[H-031 | \otional Debt Resolved
Self-Liquidation Market Draining :
- High
[H-04] Attack via Egroup LTV Downgrading Resolved
_ Positions With An Empty Safe Mask
[m-01] Are Not Fully Supported Resolved
[M-02] Missing Grace Period After Vault Resolved
=——— | Repayment Pause
[M-03] |Lack of Slippage on Liquidations Resolved
[M-04] | Ambiguous EGroup Defaulting Logic Resolved
[M-05] | Dangerous Market Account Behavior Resolved
Inability to Liquidate Positions Using
[M-06] |zToken Collateral Within the Same Resolved
Vault FlashLoan Context
Repay Health Check May Block
[M-07] |Insolvent Users From Avoiding a Full Resolved
Liquidation
_ Threshold Changes Can Invalidate Low
[L-o1] Pending Executable Proposals - Acknowledged
[L-02] Vault‘Nameg,'Symbols, and URI e Resolved
E— Require Sanitization
Market Vault Funds Retrieval
[L-03] Bypasses Clarity 4 Security Low Resolved
Enhancements
_ Reducing Collateral Liquidation LTV
[L-04] Ratios May Instantly Liquidate Users Acknowledged
_ Significant Absence of Emitted
[L-05] |z Resolved
[L-06] I\C/IaX|mum Liquidation Penalty Is Not Low Resolved
—_— apped
[L-07] Avoid Using Unwrap Panic Low Resolved

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

N O oo abhbhwdN

=
NNOO°°

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

Summary of Findings

ID Title Severity Status
[QA-01] [Inline Reserve Calculator Contract Resolved
[QA-02] | Missing Flash Loan Features Resolved
Optimization of Market Asset
- A
[QA-03] Retrieval Resolved
Eliminate Redundant Contract
[QA-04] | Caller Authentication in Vault Resolved
DAO Operations
_ Function Naming Ambiguities QA
[QA-05] Severely Decrease Code Readability - Resolved
[QA-06] | General Code Style Improvements Resolved
_ Optimization for Enabling and QA
[QA-07] Disabling Assets - Resolved
_ Promote Debug Getters in eGroup to QA
[QA-08] |, uction - Resolved
_ Simplify Nonce to a uint to Reduce A
[QA-09] Complexity Resolved
[QA-10] | Code Constants Usage Ambiguities Resolved
_ Simplification of Retrieving QA
[oA-11] Liquidation Position - Resolved
_ Optimization of Borrower Scaled QA
[QA-12] | 5Eit Retrieval - Resolved
_ Improvements Needed for Mask QA
[QA-13] Market Contract Operations - Resolved
Function check-egroup-invariant
[QA-14] | Contains Inefficiency and Resolved
Redundancies
[QA-15] [Redundant Parameter Fragment Resolved
[QA-16] Enhance Market Contract External Resolved
——— |Interface
[QA-17] |Create Market Trait Resolved
_ Implement a Majority Rule-Based QA
[QA-18] Multisig - Acknowledged
_ Integrate Max Staleness into Asset QA
[QA-19] Oracle Data Entry - Resolved
Remove Unused Market Contract
- QA
[QA-20] Code Artifacts - Resolved
[QA-21] Isolate stSTX Price Resolution from Resolved

resolve-ztoken

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

8.Findings

8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw
Tokens

Description

Clarity 4 introduces significant changes to the as-contract logic:
e The as-contract has been removed.

e as-contract? NOW exists and imposes full restrictions on all

passed tokens by default.

All Zest vaults utilize the send-underlying function to initiate the

transfer of underlying tokens. This function is generally implemented as

follows:

(define-private (send-underlying (amt uint) (account principal))
(begin
(try! (contract-call? .sbtc transfer amt current-contract account none))
(ok true)))

However, the vault-stx is an exception, as it requires permission to
pass amt tokens of STX.

(define-private (send-underlying (amt uint) (account principal))
(begin
(try! (as-contract? ((with-stx amt))
(try! (contract-call? .wstx transfer amt tx-sender account none))
true))
(ok true)))

This is a special case due to the functionality of the wrapped STX
contract.

Apart from the vault-stx , all other vaults theoretically function

correctly because the underlying sIp-10::transfer function allows

the transfer if the caller is either the contract-caller Or tx-sender .

For example, the sBTC token is implemented as follows:

(define-public (transfer (amount uint) (sender principal)
(recipient principal) (memo (optional (buff 34))))
(begin
(asserts! (or (is-eq tx-sender sender)
(is-eq contract-caller sender)) ERR_NOT_OWNER)

(try! (ft-transfer? sbtc-token amount sender recipient))
(match memo to-print (print to-print) 0x)
(ok true)

However, not all tokens support both modes of authorization. Only
more recent tokens have started to address this, while older tokens

10

https://explorer.hiro.so/txid/SM3VDXK3WZZSA84XXFKAFAF15NNZX32CTSG82JFQ4.sbtc-token?chain=mainnet

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-071 Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

still rely on tx-sender for authorization.

Among the implemented vaults, the vault-ststx contract, which
wraps the stSTX token, is the only vault that does not accept
authorization by contract-caller :

(define-public (transfer (amount uint) (sender principal)
(recipient principal) (memo (optional (buff 34))))
(begin
(asserts! (is-eq tx-sender sender) (err ERR_NOT_AUTHORIZED))

(match (ft-transfer? ststx amount sender recipient)
response (begin
(print memo)
(
print{action:”transfer”,
data:{sender:tx-sender,
recipient:recipient,
amount:amount,
block-height:block-height}}
)
(ok response)
)

error (err error)

This means that while depositing in the stsTx vault is allowed,

withdrawing from it will fail, effectively blocking user funds in the vault.

Recommendation

To resolve the issue specifically for the stsTx vault, use the with-ft

keyword to permit the movement of the stSTX tokens:

(define-private (send-underlying (amt uint) (account principal))
(begin
(try! (as-contract? ((with-ft .ststx “ststx” amt))
(try! (contract-call? .ststx transfer amt tx-sender account none))
true))
(ok true)))

To avoid concerns about future implementations of underlying token
vaults, this logic can be applied to all vaults.

Note #1: The .ststx is used locally for testing. In a production
environment, the principal should be changed to
SP45ZE494VC2YC5JYG7AYFQ44F504PYV7DVMDPBG. ststx-token | |n the
context of the with-ft command, the UNDERLYING constant can be
used (which is currently unused).

Note #2: To ensure this case is covered by tests, modify the local ststx

utility token contract to behave like the production one:

(define-public (transfer (amount uint) (sender principal)
(recipient principal) (memo (optional (buff 34))))
(begin
- (asserts! (or (is-eq tx-sender sender)
- (is-eq contract-caller sender)) err-not-token-owner)
+ (asserts! (is-eq tx-sender sender) err-not-token-owner)
(ft-transfer? ststx amount sender recipient)))

1

https://github.com/stacksgov/sips/blob/main/sips/sip-033/sip-033-clarity4.md#limiting-asset-access-restrict-assets
https://explorer.hiro.so/txid/SP4SZE494VC2YC5JYG7AYFQ44F5Q4PYV7DVMDPBG.ststx-token?chain=mainnet
https://github.com/stacksgov/sips/blob/main/sips/sip-033/sip-033-clarity4.md#limiting-asset-access-restrict-assets

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

8.2. High Findings

[H-01] Efficiency Groups Cannot Be
Updated

Description

The current implementation of Efficiency Groups allows any group to
be updated using the egroup::update function. However, this
function contains an incorrectly reversed “no changes” check:

;3 ——— early end if no mask update ---
(asserts! (is-eq prev-MASK new-MASK) (ok true))

As it stands, if the previous mask is NOT equal to the new mask (the

(is-eq prev-MASK new-MASK) condition), the asserts! exits with the

(ok true) error. The logic should be reversed to only pass the
assertion check if the previous mask IS equal to the new mask.

Recommendation

If an early exit (without reverting) is still intended, modify the asserts!

logic to only pass if prev-MASK is not equal to new-MASK

Example implementation:

;5 ——— early end if no mask update ---
(asserts! (not (is-eq prev-MASK new-MASK)) (ok true))

Additionally, consider actually reverting execution if the masks are
equal, instead of allowing a pass-through.

12

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

[H-02] DAO Implementation Cannot Be Updated

Description

The DAO executor contract is tasked with executing proposals once
they have garnered sufficient approvals from signers. A crucial
parameter, impl , holds the principal of the DAO multisig contract,
which is responsible for proposal creation and signer approvals.

The executor includes a function designed to update the
implementation’s principal:

(define-public (set-impl (new-impl principal))
(begin
(try! (IMPL))
(var-set impl (some new-impl))
(ok true)))

In practice, this function is not callable.

The DAO multisig interacts with the executor solely through
execute-proposal , which executes proposals within the context of
the proposal script rather than directly as the multisig contract.

Since 1MPL requires the caller to be the current implementation, and
dao-multisig lacks a method to invoke set-impl , the functionality
to update the implementation is effectively inaccessible.

Recommendation

To enable the missing functionality, two approaches can be
considered:

1. Introduce functionality in the dao-multisig contract that calls
dao-executor::set-impl to update the implementation. This
method can incorporate a timelock by implementing a two-step
process with a hardcoded, enforced delay.

2. Adjust the authorization of dao-executor::set-impl to utilize the
same logic as the pao validations found in other parts of the code:

(define-private (DAO)
(begin
(asserts!
(is-eq tx-sender .dao-executor)
ERR-AUTH)
(ok true)))

While Clarity does not permit reentrancy within the same function,
it does allow reentrancy within the same contract, thus enabling the
proposed fix. However, in this scenario, a timelock cannot be enforced.

13

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

52

53
55

56

57

58

60

62
63
64

65

66

[H-03] Disabled Debt Not Accounted For In
Notional Debt

Description

During the liquidation process in market::1liquidate , the liquidation
context is initially retrieved using 1liquidation-context . This context
is then used to compute the notional values of both collateral and
debt, which are essential for determining the position’s Loan-to-Value
(LTV) ratio.

The current logic retrieves context and information for all enabled
collateral and debt. However, this approach is flawed because
disabling debt is intended only to prevent the addition of new debt in
that asset, not to exclude it during health checks or the liquidation of
existing loans.

The issue arises from the filtering performed in user-safe-mask
where disabled debt assets are omitted. Consequently, disabled debt
is excluded from the LTV calculation, which artificially lowers the

LTV for positions that include such assets and affects general health
checks.

This problem impacts all market operations that depend on accurate
LTV values.

Recommendation

Modify the market::user-safe-mask function to ensure it does not
disabled debt assets.

Example implementation:

(define-private (user-safe-mask (mask-user uint) (mask-enabled uint))
(let ((enabled-collateral (bit-and mask-enabled MAX-U64))

- (enabled-debt (/ (bit-and mask-enabled DEBT-MASK) (pow u2 DEBT-OFFSET)))
(user-collateral (bit-and mask-user MAX-U64))
(user-debt (/ (bit-and mask-user DEBT-MASK) (pow u2 DEBT-OFFSET)))
(collateral-match (bit-and user-collateral enabled-collateral))

- (debt-match (bit-and user-debt enabled-debt)))

+)

- (bit-or collateral-match debt-match)))

+ (bit-or collateral-match user-debt)))

14

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

[H-04] Self-Liquidation Market Draining
Attack via Egroup LTV Downgrading

Description

The Zest v2 codebase utilizes an elevation group system where
bundles of assets are associated with specific Loan-to-Value (LTV)
parameters. More details can be found in the official documentation.

Within this framework, LTV groups are valid only if certain conditions
are met regarding borrowing, partial liquidation, and full liquidation.
Specifically, a group that is a subset of another must have its borrow,
partial liquidation, and liquidation LTVs higher than or equal to those
of the superset. This means that the more unique assets a user holds
(either as collateral or debt), the less their underlying collateral is
valued.

The market::collateral-add function adds collateral to a user’s
position. Since this operation may change the user’s LTV group if the
collateral is new, a user’s overall health status can actually deteriorate.

This situation can occur both naturally for legitimate users and can be
exploited in an attack.

Consider the following scenario for a typical user:

e The user has $1,000 in notional value from four collaterals added
ata 60% LTV group.

e The user also has debt equivalent to $550 in notional value.

e Inthis case, if the user accrues $50 more in debt, they will be
liquidated.

e To avoid liquidation, the user wants to add some new collateral
and adds $50 of a new collateral token to their position.

e By adding new collateral, the user is moved to a 50% LTV group.

e The new notional value is $1,050; however, since the user is now
ina 50% LTV group, their position is valued at $525, which is less
than their $550 debt.

e The user becomes liquidatable simply by adding more collateral.

In an attack scenario, a threat actor may:

e Deposit one type of collateral.

+ Maximize borrowing against it, bringing the liquidation point to the
borrow LTV.

e Add multiple small amounts of all other available collaterals,
making themselves fully liquidatable.

o Liquidate themselves for all existing collateral.

e Due to the penalty discount, some debt remains unpaid, which
must be socialized.

15

https://github.com/Zest-Protocol/zest-core/blob/main/docs/egroups.md

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

The attacker profits from the difference generated by the penalty
discount after accounting for execution fees, provided that the egroups
have sufficiently high differences between LTVs and high enough
penalties.

The condition is not only for the user to be fully liquidatable but also for
the penalty to be high enough such that the debt plus penalty exceeds
the available collateral.

Recommendation

Modify the collateral-add function to perform an ending health
check only if adding a new collateral asset for that user, ensuring that
the new health status is at least the same as the current status. This
means the new collateral’s total notional value, multiplied by the new
LTV evaluation, must be equal to or better than the previous status,
regardless of whether the position is healthy or not.

16

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
4

42
43

44
45

46

a7
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

8.3. Medium Findings

[M-01] Positions With An Empty Safe Mask
Are Not Fully SupportedAre Not Fully
Supported

Description

The market::assets function is responsible for retrieving asset
information for a user’s assets, including all debt assets and enabled
collateral assets. During this process, the assets::status-multi
function is called, which contains the following logic:

(define-read-only (status-multi (ids (list 64 uint)))
(let ((enabled-mask (get-bitmap))
(mask (uint-to-list-u64 enabled-mask)))
(map status ids mask)))

In this code, mask is always a non-empty list. However, if ids is an
empty list, the map function will fail, causing status-multi to abort.

Consider the following scenario:

Alice adds USDC as her only collateral asset.
Later, USDC is disabled as a collateral asset.
Alice attempts to withdraw her collateral but fails.

Once USDC is disabled, Alice’s safe mask (her user mask with disabled
collaterals removed) becomes empty. Consequently, when the system
status-multi , ids will be an empty list, leading to a map error and
preventing her from ids her funds.

Recommendation

Modify status-multi to explicitly handle cases where ids is empty.
In such instances, it should return an empty list.

Example implementation:

(define-read-only (status-multi (ids (list 64 uint)))
(let ((enabled-mask (get-bitmap))
(mask (uint-to-list-u64 enabled-mask)))
- (map status ids mask)))
+ (if (is-eq (len ids) u®) (list) (map status ids mask))))

17

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

N O oo abhbhwdN

=
NNOO°°

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

[M-02] Missing Grace Period After Vault
Repayment Pause

Description

Each vault has an independent mechanism to pause repayments,
which also implicitly pauses liquidations for that specific vault. This
functionality is distinct from the market-wide liquidation pause, which
affects all vaults simultaneously.

If repayments are paused for only a subset of vaults, the global
liquidation pause is not activated, allowing other vaults to continue with
normal liquidation activities. However, when repayments are resumed,
there is no grace period applied.

Consequently, if a vault has its repayments paused for a certain period,
any positions that become liquidatable during this pause can be
immediately liquidated once repayments are unpaused, without giving
users a chance to repay first. This behavior can lead to unfair losses for
the holders of affected positions.

Recommendation

Enable the DAO to set a liquidation grace period for vaults. Specifically:

o Allow the DAO to establish a vault liquidation grace period within
the market contract, necessitating a new function.

o This grace period should be applied on a per-vault basis and affect
the market::liquidate function.

e Transform the liquidation-grace-end variable into a map with
vault-id = grace end, while using a special ID for the market
contract itself, e.g., 100.

e Extend the market::is-liquidation-paused function to also
accept the debt asset ID as an argument and perform two checks:

» Check if there is an end time entry for the new liquidation-
grace-end map for the market itself, e.g., key 100, to verify a
global repay pause.

= Check if there is an entry for the asset-id in the new map.

This approach ensures that for each liquidation, it is verified whether

either the global liquidation or the specific vault is in a grace period.

The proposed feature should be included in a proposal where the logic
first unpauses the repayment for a specific vault and then marks the
market contract to indicate that the vault now has a liquidation grace
period.

While there is no on-chain enforcement to ensure that vault repayment
must be linked to a market liquidation grace, there is no simpler way to
implement this feature. Adding a grace period within the vault itself on

system-repay would limit both liquidations and repayments, forcing
users to add collateral if they wish to save their position.

18

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

[M-03] Lack of Slippage on Liquidations

Description

When a liquidation is initiated, the liquidator calls the market::1liguidate
or market::liquidate-multi function with the desired collateral

token to be liquidated and specifies the maximum debt repayment
amount they are willing to offer for the discounted collateral.

The amount of collateral (at a discount) a liquidator would receive
and the debt they must repay is determined by the liquidation penalty
factor, which depends on the LTV group, as well as the user’s health
status (partial versus full liquidation).

Due to the implementation of the liquidation system, a liquidator
may call market::liquidate expecting a specific profit after
liquidation but may receive less due to several factors:

o The user, either intentionally or unintentionally, has front-run the
liquidation by adding more collateral or repaying to reduce the
amount they are liquidated for.

o A price update has occurred in the same block before the
liquidator’s call, and the new prices are unfavorable.

o A separate user’s debt asset was liquidated, moving the user to a
different LTV group where the liquidation penalty discount is less
favorable than the original one.

In all these scenarios, the liquidator receives less value than expected.
In certain cases, the liquidator might not have initiated the liquidation
if they had up-to-date state information, due to a lack of profitability.

Recommendation

Allow liquidators to specify @ minimum-collateral-received

amount when calling liquidate . If the resulting coli-final from

the liquidate callis not at least equal to this amount, then revert the
liquidation. If liquidators do not wish to use this option, they can simply
setitto 0.

19

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

52

53
55

56

57

58

60

62
63
64

65

66

[M-04] Ambiguous EGroup Defaulting Logic

Description

The Zest v2 codebase utilizes an efficiency group system where
bundles of assets are linked to specific LTV parameters. More details
can be found in the official documentation.

A user’s position is associated with one of these maps/groups if it is
a subset of it (closest match, see a walkthrough here). If no group is
found, the default EGroup is used.

The default group values are:

;5 default
(define-constant DEFAULT-MASK-ID u255)

(map-insert registry (uint-to-buffl DEFAULT-MASK-ID)

{
id: (uint-to-buffl DEFAULT-MASK-ID),
MASK: MAX-U128,
LIQ-CURVE-EXP: (uint-to-buff2 u10000),
LIQ-PENALTY-MIN: (uint-to-buff2 ule0),
LIQ-PENALTY-MAX: (uint-to-buff2 ul000),
LTV-BORROW: (uint-to-buff2 u0),
LTV-LIQ-PARTIAL: (uint-to-buff2 u@),
LTV-LIQ-FULL: (uint-to-buff2 u@)

b

The current default values were chosen to prevent normal execution
flow with them. However, this behavior is not consistently enforced,
leading to unusual situations:

1. Adding Collateral Works with Any Group

The current market::add-collateral function does not check
any group logic, allowing users to add any collateral token as long
as it is an approved collateral asset.

2. Removing Collateral Works in Any Group if No Debt

Removing collateral via the market::collateral-remove function
does not revert for any group if the health check passes. For the
default group, the health check can only pass if the user has no
debt.

3. Repaying is Allowed in Some Cases

When repaying a position via the repay function, if the full debt
amount associated with a token is not repaid, no health check is
performed, and repayment is allowed. If the full debt is repaid,

a health check is conducted with the new LTV group. If the new
user mask still has no superset and the user has other debt, the
position reverts due to low health. If this was the last user debt,
the repayment is successful. If the new user mask has a superset,
normal LTV health logic is applied, and the position may or may

20

https://github.com/Zest-Protocol/zest-core/blob/main/docs/egroups.md
https://github.com/Zest-Protocol/zest-core/blob/main/docs/egroups.md#example-walkthrough

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

52

53
55

56

57

58

60

62
63
64

65

66

not be healthy.
4. Borrowing Cannot Be Done Within the Default Group

The borrow function performs two health checks. The first check
is for the existing user group, which defaults to group 0, setting all
collateral to no value. This check can be passed if the user has no
debt. However, the second check, done with the updated mask,
keeps the user in the default group, causing a revert due to the
newly added debt.

5. Liquidations Cannot Be Done Within the Default Group

Liquidating a position fails because, during liquidation, the protocol
calls calc-lig-factor :

(define-private (calc-lig-factor (ltv-curr uint) (ltv-lig-partial uint)
(ltv-1lig-full uint))
(min BPS (div-bps-down (- ltv-curr ltv-lig-partial)
(- ltv-lig-f ull ltv-lig-partial))))

If both 1tv-lig-full and ltv-lig-partial are 0, this calculation
reverts due to division by zero.

The current implementation of the egroup contract allows any group
to be modified through the egroup::update function. A potential side
effect of changing a group’s mask is that any existing user positions,
which initially mapped to the old mask (as a subset), will now use the
default group values.

Considering the above, several issues or odd cases arise from the
current egroup defaulting mechanism:

A. If the team does not ensure that all potential user position masks
are covered by existing egroup masks, users will default to the default

group.

B. If the team updates the mask of an existing egroup without
considering existing user positions, users with active loans will use the
default egroup.

C. The default group is inconsistent: adding collateral is permitted,
removing collateral is permitted if no debt, borrowing fails intentionally,
but liquidations fail coincidentally due to division by zero.

D. A user defaulted to the EGroup may have a chance to exit the
system if the conditions elaborated in repaying, point (3) , are met.

21

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

N O oo abhbhwdN

=
NNOO°°

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

Recommendation

Most issues can be resolved by ensuring a uniform default group
behavior that disallows any entry point operations if the user is or
enters the default group. Instead of returning a default group, the

egroup: :resolve function should revert if no group is found. Using
this new function, ensure all functions that modify the user mask check
that they have not reached a default group or revert.

The only issue not covered is (B) , where the team does not ensure

all existing user positions are covered when updating an existing
mask. This is not something that can easily be implemented on-chain.
However, with the other mentioned changes, users in this group would
be as if they were paused (as no operations would be allowed).

In this situation, the team would need to quickly add an egroup mask
to map these users. By doing so, the issue will be resolved without any
problem. However, if this operation takes too long, users might become
liquidatable. To mitigate this, the team can only pause liquidations

per vaults/global, not per egroup. The team can manage the crisis by
pausing liquidations for a short interval while they donate funds to
affected parties to repay part of their debt. Alternatively, if repaying

is modified to work on behalf of others, they can directly repay part of
the targeted user debt.

Adding an on-chain mechanism here would not benefit anyone. Similar
to how the Reducing Collateral Liquidation LTV Ratios May Instantly
Liquidate Users issue can be avoided by incremental team changes,
this issue can be better mitigated off-chain or using other mechanisms
rather than implementing restrictions on egroup mask updates.

To conclude, our recommendation is to:

e Remove the default egroup and ensure all market operations revert
if a user position (old and new) does not map to any egroup.

e Ensure no egroup mask updates leave any users in the default
egroup.

o Prepare a contingency strategy for cases where, by mistake, an
egroup update throws users into no group.

22

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

[M-05] Dangerous Market Account Behavior

Description

The current Zest market contract includes entry points for all relevant

market operations. All non-liquidation functions allow an account
principal:

(define-public (collateral-add (ft <ft-trait>) (amount uint)
(account principal))
(define-public (collateral-remove (ft <ft-trait>) (amount uint)
(account principal))
(define-public (borrow (ft <ft-trait>) (amount uint) (account principal))
(define-public (repay (ft <ft-trait>) (amount uint) (account principal))

In each of these cases, the account must be either the tx-sender or
contract-caller . Thisis enforced through checks:

(asserts! (or (is-eq account tx-sender)
(is-eq account contract-caller)) ERR-AUTH)

However, the underlying funds logic or accounting only utilizes tx-sender .

Here's a detailed explanation for each situation:
1. Adding Collateral
When adding collateral via market::collateral-add ,the market-

vault::collateral-add function is called with the account | leading

t0 market-vault::receive-tokens

(define-public (collateral-add (account principal) (amount uint)
(ft <ft-trait>) (asset-id uint))

(receive-tokens ft amount account)

In receive-tokens , the asset::transfer call can only succeed if the
accountis tx-sender , as per SIP-10 transfer logic.

(define-private (receive-tokens (asset <ft-trait>) (amount uint)
(account principal))
p p
(unwrap-panic
(contract-call? asset transfer amount account current-contract none)))

It cannot function with contract-caller since that value is set to the
market contract, which called the market-vault itself. This means
the tx-sender can decide whether to add collateral to the contract-

caller orthemselves.

2. Removing Collateral

When removing collateral via collateral-remove , the collateral
accounting is done concerning the passed account , and the account
is the one receiving the tokens. However, this allows any downstream
contract-caller (s)thatdo notchange tx-sender toremove

23

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
4

42
43

44
45

46

a7
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

collateral to a point where the position is barely healthy. At that point,
the account can be easily liquidated, even if it still has its collateral.

3. Borrowing Assets

The market::borrow function calls vault-*::system-borrow to obtain
the borrowed funds, but this function implicitly sends the funds to the
tx-sender . However, it adds the debt to the passed account.

This means the tx-sender can receive the funds while the contract-
caller assumes the debt.

4. Repaying Debt

Repaying the debt via market::repay presents another odd situation.
To repay debt, the vault-*::system-repay function is called, which

takes the underlying tokens from the tx-sender .While the funds are

always taken from the tx-sender ,the account is marked as having

the debt paid.

This allows a situation where the tx-sender pays, but the contract-
caller has the debt reduced.

5. Liquidations

As liquidations are currently implemented, the tx-sender repays the
debt and receives the collateral. This could be better changed to the

contract-caller .

All these situations arise due to ambiguity regarding the allowed caller
versus benefactor versus payer.

Recommendation

For removing collateral, modify the collateral-remove function as
follows:

e Ensure collateral removal only works for the contract-caller |,
removing the account parameter from the function prototype and
adding it locally in the let declaration as

—-caller)

(account contract

e The function now sends the removed collateral of the
contract-caller to itself, but integrators may wish to have an
optional receiver, defaulting to the contract-caller if not specified.

24

CONTENTS

1. About Clarity Alliance 2
2. Disclaimer 3 - (define-public (collateral-remove (ft <ft-trait>) (amount uint)
3.Introduction a4 - (account principal))
4. About Zest Protocol a4 +(define-public (collateral-remove (ft <ft-trait>) (amount uint) (receiver
5. Risk Classification 5 + (optional principal)))
5.1.In'1pa.ct 5 (let ((ft-address (contract-of ft))
izt L'kejhhmd . 3 < (asset (get-asset ft-address))
5.3. Action required for severity levels 5 t-id £ id t
6. Security Assessment Summary 6 (asset-id (get id asset))
7.Executive Summary 7 + (account contract-caller)
8.Summary of Findings 8 + (collateral-receiver (match receiver recv recv contract-caller))
8.1. Critical Findings 10 (is-collateral-enabled (get collateral asset))
[C-01] stSTX Vault Cannot Withdraw Tokens 10
8.2. High Findings 12 ;3 Step 1: Get position WITHOUT resolving prices
[H-01] Efficiency Groups _Cannot Be Updated 12 @@ -765,7 +767,6 @@
[H-02] DAO Implementation Cannot Be Updated 13 .
i i 55 post-removal calculation
[H-03] Disabled Debt Not Accounted For In Notional 14
Debt (removed-asset-value
[H-04] Self-Liquidation Market Draining Attack via 15 (find-and-resolve-asset-value assets asset-id amount true)))
Egroup LTV Downgrading
8.3.Medium Findings 17 - (asserts! (or (is-eq account tx-sender)
[M-01] Positions With An Empty Safe Mask Are Not 17 - (is-eq account contract-caller)) ERR-AUTH)
Fully Supported , (asserts! (> amount u®) ERR-AMOUNT-ZERO)
[M-02] Missing Grace Period After Vault Repayment 18
FruEs (asserts!
[M-03] Lack of Slippage on Liquidations 19 (is-healthy collateral-value debt-value current-1ltvb) ERR-UNHEALTHY)
[M-04] Ambiguous EGroup Defaulting Logic 20
[M-05] Dangerous Market Account Behavior 23 @@ -800,15 +801,16 @@
[M-06] Inability to Liquidate Positions Using zToken 30 amount
Collateral Within the Same Vault FlashLoan Context ft
[M-07] Repay Health Check May Block Insolvent 31 oid
Users From Avoiding a Full Liquidation asse
8.4.Low Findings 33 - account)))
[L-01] Threshold Changes Can Invalidate Pending 33 + collateral-receiver)))
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require 34
Sanitization q .
[L-03] Market Vault Funds Retrieval Bypasses Clarity 35 For borrowing ,if no changes to the vaults are allowed, remove the
4 Security Enhancements H H
account
IL-04] Raucing Colleteral Liquidation LTV Ratios . completely from the function prototype and set it locally as
play Instanty Liauidare Users = tx-sender . However, this is insufficient as the contract-caller can
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liguidation Penalty Is Not Capped 40 initiate a borrow for the tx-sender | so we also need to enforce that
[L-071 Avoid Using Unwrap Panic a1
8.5.QAFindings 42 tx-sender IS equal to contract-caller
[QA-01] Inline Reserve Calculator Contract 42
[QA-02] Missing Flash Loan Features 43
[QA-03] Optimization of Market Asset Retrieval 44
[QA-04] Eliminate Redundant Contract Caller 45 - (define-public (borrow (ft <ft-trait>) (amount uint) (account principal))
)[A;Tz]sti]cstion ianuIt DAiO%erationsS I m +(define-public (borrow (ft <ft-trait>) (amount uint))
e unction Naming Ambiguities Severely _
Decrease Code Readability (let ((address (contract-of ft))
[QA-06] General Code Style Improvements 47 (asset (get-asset address))
[QA-07] Optimization for Enabling and Disabling 50 (asset-id (get id asset))
Assets + (account tx-sender)
[QA-08] Promote Debug Getters in eGroup to 51
Production L. . .
[QA-09] Simplify Nonce to a uint to Reduce 52 ;5 Step 1: Get position WITHOUT resolving prices
Complexity (position (get-position account))
e S RN
Position impiitication of ketrieving Hiquiidation (debt-value (get debt notional-valued-assets)))
[QA-12] Optimization of Borrower Scaled Debt 56
Retrieval 55 preconditions
[QA-13] Improvements Needed for Mask Market 57 _ (asserts! (or (is-eq account tx-sender)
Contract Operations e B B
[QA-14] Function check-egroup-invariant Contains 58 (is-eq account contract-caller)) ERR-AUTH)
Inefficiency and Redundancies + (asserts! (is-eq contract-caller tx-sender) ERR-AUTH)
[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63 A X - . .
[QA-19] Integrate Max Staleness into Asset Oracle 64 This constraint of (is-eq contract-caller tx-sender) js reqwred
Data Entry
[QA-20] Remove Unused Market Contract Code 65 because We can’t change who receives the funds; implicitly, the funds
Artifacts . .
[QA-21] Isolate StSTX Price Resolution from 66 receiver must be the one who incurs the debt.

resolve-ztoken

If modifying the vault interface is allowed, set the borrower as the
contract-caller and reuse the recipient logic from collateral-remove

The vault:system-borrow function would then require changes to
allow passing a recipient principal. The market::vault-system-borrow
function would subsequently need changes to accommodate this new
parameter.

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
4

42
43

44
45

46

a7
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

When repaying debt via the repay function, to avoid having the
tx-sender as a hard requirement, the funds first need to be
transferred to the market contract, then within an as-contract call,
transfer them to the vault. This is necessary as the vaults themselves
pass execution to the SIP-10 underlying assets, which use the tx-sender
for authorization. While further changing the vault may be possible,
some vaults may use older tokens which only allow for tx-sender
authorization, such as the vault-ststsx . Meaning the
vault::system-repay behavior should use, as it is using now, for
underlying transfer authorization.

Thus, if we want to have contract-caller as the payer, we need to

modify the vault::system-repay function to accepta from parameter,

where if we are not transferring the funds from the tx-sender

(which accounts for the case where the contract-caller is also the
tx-sender) we first need to move the funds to the market contract

and then to the vault.

Example implementation for vault::system-repay :

- (define-private (vault-system-repay (aid uint) (amount uint))
+(define-private (vault-system-repay (asset-id uint) (amount uint)
+ (from principal) (ft «ft-trait>) (ft-address principal))
+ (begin
+ (if (is-eg from tx-sender)
+ (call-system-repay asset-id amount)
+ (begin
+ ;5 transfer amount from the “from” principal to the current contract
+ is this allows for contract-caller type authorization on tokens
+ 55 StSTX and wSTX repayments will require contract-caller == tx-sender
+ ;5 otherwise this transfer will revert
+ (try! (contract-call? ft transfer amount from current-contract none))
+
+ (if (is-eq ft-address ZEST-STX-WRAPPER-CONTRACT)
+ (as-contract? (with-stx amount))
+ (try! (call-system-repay asset-id amount)))
+ (as-contract? ((with-ft ft-address “x” amount))
+ (try! (call-system-repay asset-id amount))))))))
+
+(define-private (call-system-repay (aid uint) (amount uint))
(if (is-eq aid STX (contract-call? .vault-st system-repay amount)
(if (is-eq aid sBTC) (contract-call? .vault-stc system-repay amount)
(if (is-eg aid stSTX) (contract-call? vault-stst system-repay amount)

Note #1, transferring funds from the market contract to the vaults
requires the as-contract? and implicit restrictions, thus we need to
separate in between with-stx and with-ft branches, since wsTx
does not work with with-ft |ogic, due to a moving underlying sTx
directly.

And the repay implementation itself would be something similar to:

26

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

- (define-public (repay (ft <ft-trait>) (amount uint) (account principal))
+(define-public (repay (ft <ft-trait>) (amount uint) (on-behalf-of
+ (optional principal)))
(let ((address (contract-of ft))
(asset (get-asset address))
(asset-id (get id asset))
+ 55 defaults to payer (contract-caller) if not specified
+ (account (match on-behalf-of behalf behalf contract-caller))

55 Step 1: Get position WITHOUT resolving prices
(position (get-position account))
@@ -880,15 +913,11 @@
55 Check if repaying ALL debt for this asset
(repaying-all (is-eq repaid-scaled-debt account-scaled-debt)))

- (asserts! (or (is-eq account tx-sender)
- (is-eq account contract-caller)) ERR-AUTH)

55 preconditions
(asserts! (> amount u®) ERR-AMOUNT-ZERO)
(asserts! (> repaid-scaled-debt u@) ERR-INSUFFICIENT-SCALED-DEBT)

- 55 repay
- (try! (vault-system-repay asset-id amount-to-repay))

+ (try!
+ (vault-system-repay asset-id amount-to-repay contract-caller ft address))
55 update

Note #2: repaying debt on behalf of someone has the effect of
potentially removing a bit from the user mask (if all debt is paid) which
sends them into a different egroup. E groups have an on-chain enforced

invariant, that group subsets must have a higher or equal LTV value,
which means that, repaying a position cannot reduce a users health.
There is also an extra health check, out of abundance of caution
regardless. Implicitly there are no abusable scenarios when repaying on
behalf of someone.

Regarding the collateral-add function. The same changes are
needed to bypass the tx-sender payer restriction that were applied to
the repay function. Meaning to move funds to the market contract in
case the tx-sender isnotthe contract-caller .

In this situation, the tx-sender |s forced to be the source
of the collateral due to how the market contract passes to the
market-vault the transfer logic authentication. As such, the
(is-eqg contract-caller tx-sender) check is arequirement, to ensure
the contract-caller is not initiating collateral adding.
Example

collateral-add implementation:

27

https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/registry/egroup.clar#L132-L187
https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/registry/egroup.clar#L132-L187
https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/market/market.clar#L896-L908

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

(define-public (collateral-add (ft «ft-trait>) (amount uint))
(let ((ft-address (contract-of ft))
(asset (get-asset ft-address))
(asset-id (get 1id asset))

(account contract-caller))

(asserts! (get collateral asset) ERR-COLLATERAL-DISABLED)

(if (is-eg account tx-sender)
(contract-call? market-vault collateral-add account amount ft asset-id
(begin
;5 transfer amount from the “from” principal to the current contract
;5 this allows for contract-caller type authorization on tokens
55 StsTX and wSTX repayments will require contract-caller == tx-sender
;; otherwise this transfer will revert
(try! (contract-call? ft transfer amount account current-contract none))
(if (is-eq ft-address ZEST-STX-WRAPPER-CONTRACT)
(as-contract? ((with-stx amount))
(try!
(contract-call? .market-vault collateral-add account amount ft asset-id)))
(as-contract? ((with-ft ft-address “x” amount))
(try!
(contract-call? .market-vault collateral-add account amount ft asset-id))))))

Note #3: adding collateral on behalf of someone can introduce health
issues, if the donator adds dust, just enough to add the user to higher
Egroups, which implicitly have a lower LTV ratio, and may put the user in
bad health.

Note #4: there is a lack of health check here that should be done
regardless of implementing on-behalf-of, however, if repaying debt is
allowed on behalf of someone (which has less potential attack surface),
also adding this feature to collateral-add is superfluous.

The last point to discuss are liquidations. Liquidations had no
ambiguities since tx-sender was both the payer and receiver of funds.
Adding an optional receiver of funds may be cumbersome, but doable if
needed.

However, to maintain consistency and with the new modified

vault-system-repay function, the liguidate function also needs
to be slightly modified. If we do apply the same changes and have
liquidations done by the contract-caller then the changes are
needed.

Example modifications to support contract-caller payer and receiver.

28

CONTENTS

1. About Clarity Alliance
2.Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-071 Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

@@ -1128,6 +1157,7 @@
(debt-amount uint)
(min-collateral-expected uint))
(let (
+ (liquidator contract-caller)
(context (get-liquidation-context borrower))
(position (get position context))
(pos-full (get-full-position borrower))
@@ -1216,7 +1246,7 @@
(asserts! (>= coll-final min-collateral-expected) ERR-SLIPPAGE)
;3 execute liquidation
- (try! (vault-system-repay debt-aid debt-to-repay))
+ (try!
+ (vault-system-repay debt-aid debt-to-repay liquidator debt-ft debt-address))
;3 update obligations and socialize bad debt
(let ((debt-updated (try! (contract-call? .market-vault
@@ -1230,7 +1260,7 @@
coll-final
collateral-ft
coll-aid
- tx-sender)))
+ liquidator)))
(no-collateral-left (and

Note #5: if the liquidator is still intended to be the tx-sender ,then
having the liquidate variable setto tx-sender isenough.

29

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

[M-06] Inability to Liquidate Positions Using
zToken Collateral Within the Same Vault
FlashLoan Context

Description

When a flash loan is taken from a vault, a specific reentrancy flag,
in-flashloan , is set to prevent users from depositing back into the
vault.

This flag is specifically checked in the following scenarios:

° vault::transfer
o vault: :deposit
b vault: :redeem

vault: :flashloan

Among these scenarios, by blocking vault share transfers, operations
such as using a flash loan of the underlying asset to liquidate a user
and requesting the vault LP as collateral cannot be performed.

This is a specific use case; however, the team has expressed interest
in this functionality.

Recommendation

Remove the in-flashloan check from the vault::transfer function
in all vaults.

30

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

N O oo abhbhwdN

=
NNOO°°

13
14

15

17
17

18

19
20
23

31

33
33

34

35

52

53
55

56

57

58

60

62
63
64

65

66

[M-07] Repay Health Check May Block
Insolvent Users From Avoiding a Full
Liquidation

Description

The Zest v2 codebase utilizes an elevation group system where
bundles of assets are linked to specific Loan-to-Value (LTV)
parameters. More details can be found in the official documentation.

Within this framework, the LTV groups are valid only if certain
conditions are met concerning borrowing, partial liquidation, and full
liquidation. Specifically, a group that is a subset of another must have
its borrow, partial liquidation, and liquidation LTVs equal to or higher
than those of the superset. This implies that the more unique assets
a user holds (either as collateral or debt), the less their underlying
collateral is valued.

In the market::repay function, a health check is performed at the end
of the function when repaying the full debt asset.

This leads to a situation where any underwater position with two or
more debt assets cannot fully repay any debt associated with one
asset if the resulting position remains underwater.

In practice, users at risk of full liquidation cannot simply repay all
debt associated with one asset if they remain unhealthy after the
repayment. To protect themselves in this scenario, they would need
to repay slightly less than their full debt on each asset individually to
avoid triggering the health check.

This results in a poor user experience, although it only affects
unhealthy positions where repayments still leave them unhealthy. In
extreme cases, if users or third-party integrators are unaware of this,
they may end up liquidated if this behavior is not clearly communicated.

While the health check during debt repayment has some merit, in
practice, due to the setup of the egroup invariant, the likelihood of a
healthy position becoming unhealthy after repayment is minimal. This
scenario is theoretically possible only if a user belongs to an egroup
whose mask was altered, and a new egroup with a completely separate
mask (not a subset or superset of any existing masks) is added, with a
lower LTV than the original group. For this to occur, the Zest protocol
team would need to introduce it mistakenly.

31

https://github.com/Zest-Protocol/zest-core/blob/main/docs/egroups.md

|
CONTENTS

1. About Clarity Alliance 2 .
2.Disclaimer 3 Recommendation
3.Introduction 4
4. About Zest Protocol 4 We propose tWO OptionS:
5. Risk Classification 5!
5.1.Impact 5
5.2. Likelihood 5 . .
.5, Action equired for severiy evels . 1. Modify the repay function to perform the health check only when
j:e“'i?’Azsessme'“s"m"‘a’y ‘75 fully repaying an asset debt and only if the current position was
. EXecutive summary
8. Summary of Findings 8 healthy. This means skipping the ending health check if the position
8.1. Critical Findings 10 . .
TSSOl G R sl Tans - was not healthy before repayment, as it blocks partial repayments.
8.2.High Findings 12
[H-01] Efficiency Groups Cannot Be Updated 12
[H-02] DAO Implementation Cannot Be Updated 13 2. Remove the health check altogether, since realistically, due to
[H-03] Disabled Debt Not Accounted For In Notional 14
Debt the on- chain egroup invariant, this scenario is unlikely to occur in
[H-04] Self-Liquidation Market Draining Attack via 15 .
Egroup LTV Downgrading praCtICe.
8.3.Medium Findings 17

[M-01] Positions With An Empty Safe Mask Are Not 17
Fully Supported
[M-02] Missing Grace Period After Vault Repayment 18

Pause

[M-03] Lack of Slippage on Liquidations 19
[M-04] Ambiguous EGroup Defaulting Logic 20
[M-05] Dangerous Market Account Behavior 23

[M-06] Inability to Liquidate Positions Using zToken 30
Collateral Within the Same Vault FlashLoan Context

[M-07] Repay Health Check May Block Insolvent 31
Users From Avoiding a Full Liquidation

8.4.Low Findings 33
[L-01] Threshold Changes Can Invalidate Pending 33
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require 34
Sanitization

[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35
4 Security Enhancements

[L-04] Reducing Collateral Liquidation LTV Ratios 38

May Instantly Liquidate Users

[L-05] Significant Absence of Emitted Events 39

[L-06] Maximum Liquidation Penalty Is Not Capped 40

[L-07] Avoid Using Unwrap Panic a1
8.5. QA Findings 42

[QA-01] Inline Reserve Calculator Contract 42

[QA-02] Missing Flash Loan Features 43

[QA-03] Optimization of Market Asset Retrieval 44

[QA-04] Eliminate Redundant Contract Caller 45

Authentication in Vault DAO Operations

[QA-05] Function Naming Ambiguities Severely 46

Decrease Code Readability

[QA-06] General Code Style Improvements a7

[QA-07] Optimization for Enabling and Disabling 50

Assets

[QA-08] Promote Debug Getters in eGroup to 51

Production

[QA-09] Simplify Nonce to a uint to Reduce 52

Complexity

[QA-10] Code Constants Usage Ambiguities 53

[QA-11] Simplification of Retrieving Liquidation 55

Position

[QA-12] Optimization of Borrower Scaled Debt 56

Retrieval

[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

N O oo abhbhwdN

=
NNOO°°

13
14

15

17
17

18

19
20
23

31

33
33

34

35

52

53
55

56

57

58

60

62
63
64

65

66

8.4. Low Findings

[L-01] Threshold Changes Can Invalidate
Pending Executable Proposals

Description

The dao-multisig contract maintains a list of signers who can create

and approve proposals. All proposals and their associated data are
stored in the proposals map.

A proposal becomes executable when, among other conditions, the
number of approvals meets or exceeds the threshold value. Each
proposal also includes an expiration timestamp.

Consider the following scenario:

e A proposal is created with an expiration timestamp ET , and the
current threshold = 2

e The proposal receives its second approval shortly before ET .

o Before the proposal is executed, the DAO increases the approval
threshold.

Although the proposal was executable after the second approval, it
becomes non-executable following the threshold change. Since this
update occurs close to the expiration time, there may not be enough
time for the additional required signer(s) to approve, effectively
blocking execution.

This creates a timing-dependent inconsistency where proposals can
become invalid due to configuration updates that occur between
approval and execution.

Recommendation

One possible solution is to include a threshold field within the

proposals map to store the threshold value at the time of proposal
creation. When verifying execution conditions, use the minimum of
the stored threshold and the current threshold. However, this has
implications and should be correlated with the number of signers at
that time.

Ultimately, a fool-proof solution would imply substantial overhead and
is, objectively, not worth the benefit it adds. Thus, we recommend
acknowledging this finding.

33

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

[L-02] Vault Names, Symbols, and URI Require
Sanitization

Description

The current vault implementations comply with SIP-10 and, as such,
have distinct names, symbols, and token URIs.

All of these are constants and are as follows:

Contract Name Symbol URI

vault-sbtc zest sbtc zsbtc none
vault-ststx zest ststx zststx none
vault-stx Zest STX zSTX none
vault-usdc zest usdc zusdc none
vault-usdh zest usdh zusdh none

It is evident that, except for vault-stx all others are in lowercase.
This inconsistent formatting is not standardized and may negatively
impact third-party Ul elements. Additionally, all vaults lack the
capability to modify the URI, which could be beneficial if customization
is ever required.

Recommendation

Adjust the names and symbols of the mentioned vaults to adhere to
more formal standards.

Consider enabling the URI to be modified through a pro -gated
function.

34

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

[L-03] Market Vault Funds Retrieval Bypasses
Clarity 4 Security Enhancements

Description
Clarity 4 introduces significant changes to the as-contract logic:
e The as-contract has been removed.

. as-contract? Now exists with default full restrictions on all
passed tokens.

The Zest v2 market vault utilizes the send-tokens function to transfer
stored tokens to the caller.

(define-private (send-tokens (asset <ft-trait>) (amount uint)
(account principal))
(unwrap-panic
(as-contract? ((with-all-assets-unsafe))
(unwrap-panic
(contract-call? asset transfer amount tx-sender account none)))))

Although the specific asset to be transferred is known during the call,
the as-contract? Iogic isinvoked with a with-all-assets-unsafe

allowance, permitting all transfers.

The new as-contract? behavior would block all transfers of any other
assets if used correctly. However, in this scenario, if a malicious asset
is ever introduced, invoking the sIP-10::transfer on it within the

market-vault::send-tokens context would allow the complete
draining of all tokens in the vault.

Note that adding a malicious asset token would require several critical
system compromises.

Recommendation

To better protect user funds, modify the market-vault::send-tokens
allowance expression to specifically allow transfers of the specified
token.

This should typically involve modifying the following line:

- (as-contract? ((with-all-assets-unsafe))
+ (as-contract? ((with-ft (contract-of asset) “*” amount))

However, since sTx (wrapped) is one such token, a particular issue
arises with some existing stx wrappers, which actually move stx
and lack a backing fungible token. To address this, the code would also
require a (with-stx amount) , but this would leave a vulnerability for
extracting stx the event of a malicious token hack (similar to the ALEX
hack).

35

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

50

52

53
55

56

57

58

60

62
63
64

65

66

The purpose of using an stx wrapper token is to enable its use in
the context of other fungible tokens without requiring special code.
This was achieved until now and with Clarity 4. With the with-stx
differentiation, the simple wrapper version, which just wraps
stx-transfer? commands, cannot be used without special code.

Therefore, we recommend creating an sTx wrapper that functions as

a normal FT token, where users would need to call wrap to convert

their sTx to wsTx and unwrap to convert wsTx to sTx ina 1:1ratio.

The wrapper should also have no permissioned role, no way to extract

funds, be as simple as possible, and allow for incorrectly transferred
STX (instead of wrapped) to be accounted for.

With this new version of the STX wrapper, all inline code logic that
used with-stx (including in the vault-stx vault) can be removed in
favor of normal fungible token transfer authorization.

Thus, the recommendation is to:

e Createan stx wrapper that stores stx and wraps/unwraps as
needed.

o Use this wrapper in the codebase.

¢ By doing this, the (as-contract? ((with-ft (contract-of asset) “#*”

can be

retained, and in the vault-stx ,the as-contract from the
send-underlying function can be removed completely, as the

underlying would act like any other normal SIP-10 token, allowing
contract-caller as authorization.

amount)) version in the market-vault::send-tokens

Another option is to specifically check if the asset contract is the Zest
STX wrapper contract and differentiate behavior accordingly.

Example market-vault implementation:

36

https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/utility/token/wstx.clar#L16
https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/utility/token/wstx.clar#L16
https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/utility/token/wstx.clar#L16

CONTENTS

1. About Clarity Alliance
2.Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-071 Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

(define-constant PRECISION ul00000000)
(define-constant BPS ul0000)
+(define-constant ZEST-STX-WRAPPER-CONTRACT .wstx)

55 pack utilities - inlined to avoid contract call overhead
@@ -291,9 +292,12 @@
(unwrap-panic
(contract-call? asset transfer amount account current-contract none)))

(define-private (send-tokens (asset <ft-trait>) (amount uint)
(account principal))

- (unwrap-panic

- (as-contract? ((with-all-assets-unsafe))

- (unwrap-panic

- (contract-call? asset transfer amount tx-sender account none)))))

+ (let ((asset-contract (contract-of asset)))

+ (if (is-eq asset-contract ZEST-STX-WRAPPER-CONTRACT)

(as-contract? ((with-stx amount))

+

(try! (contract-call? asset transfer amount tx-sender account none)))

+ o+

(as-contract? ((with-ft asset-contract “x” amount))
(try!
+ (contract-call? asset transfer amount tx-sender account none))))))

+

(define-private (refresh
(mask uint)) { mask: mask, last-update: stacks-block-time })

@@ -332,7 +336,7 @@
(asserts! (> amount u@) ERR-AMOUNT-ZERO)

(insert updated-entry)

- (send-tokens ft amount recipient)

+ (try! (send-tokens ft amount recipient))
(ok remaining)))

Note: The actual address must be set in the zEST-STX-WRAPPER-CONTRACT
and be the same as used in the vault-stx contract.

37

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

N O oo abhbhwdN

=
NNOO°°

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

[L-04] Reducing Collateral Liquidation LTV
Ratios May Instantly Liquidate Users

Description

The DAO has the ability to modify the supported collateral Loan-to-
Value (LTV) ratios by invoking the egroup::update function.

There are two LTVs stored for liquidation purposes: partial and full
liquidation LTVs. These thresholds determine when users begin to face
liquidation.

If a token is deemed unsuitable as collateral from a market or economic
standpoint, or if the current LTVs are considered excessively high

and need reduction, governance can call egroup::update with more
appropriate liquidation LTVs.

However, reducing these LTVs can immediately decrease the collateral
value of all existing borrowing positions secured by it, potentially
leading to instant liquidation of users.

Recommendation

An on-chain solution would involve modifying the egroup: :update
function to include an LTV ramp duration when adjusting the liquidation
LTVs (both partial and full). This ramp would represent a linear
decrease from the time of the update to the desired values over the
ramp period. If no ramp duration is specified, the change would be
immediate. The ramp should only impact liquidations.

By implementing this approach, users would still reach the liquidation
point, but not instantaneously, providing them a fair opportunity

to unwind their positions. This method has been adopted by some
projects over time.

However, incorporating this mechanism into the existing system
would introduce significant overhead. Therefore, we recommend
acknowledging this issue and, when reducing liquidation LTVs, to do
so gradually (e.g.,reducing by 1% every 24 hours until a 10% intended
reduction is achieved).

38

https://docs.euler.finance/developers/evk/security/#ltv-ramping

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

[L-05] Significant Absence of Emitted
Events

Description
The entire codebase is completely devoid of any print statements.
This greatly restricts off-chain monitoring and integration capabilities.

Recommendation

Incorporate print events into all public functions and entry points within
the codebase.

A standardized print/event structure can be implemented to facilitate
off-chain processing. An example of such a structure is:

(print {
action: “<function-name or action>”,
caller: <caller>,
data: {
<keyl>: <valuel>,
<key2>: <value2>,

<keyN>: <valueN>

b

39

|
CONTENTS

1. About Clarity Alliance 2
2.Disclaimer 3 [L-06] Maximum Liquidation Penalty Is
3.Introduction 4
4. About Zest Protocol a Not Ca pped
5. Risk Classification 5!
5.1.Impact 5
5.2. Likelihood 5 . .
5.3. Action required for severity levels 5
6. Security Assessment Summary 6 DeSC rl ptl O n
7.E tive S 7
8. Summary of Findings s When setting an elevation group, the maximum liquidation penalty
8. Critical Findings _ 1 bounds are specified. These bounds are defined within [LI0-PENALTY
[C-01] stSTX Vault Cannot Withdraw Tokens 10 . . .
8.2. High Findings 12 -MIN, LIQ-PENALTY-MAX] and are measured in basis points.
[H-01] Efficiency Groups Cannot Be Updated 12
[H-02] DAO Implementation Cannot Be Updated 13
g:b?w'sab'e" Debt Not Accounted For In Notional 14 Although there is a validation ensuring that the minimum penalty is less
[H-04] Seff-Liquidation Market Draining Attack via 15 than the maximum (< LIQ-PENALTY-MIN LIQ-PENALTY-MAX)) there is no
Egroup LTV Downgrading . .) .)
8.3.Medium Findings 17 validation to ensure that the maximum penalty itself is less than 100%.

[M-01] Positions With An Empty Safe Mask Are Not 17
Fully Supported

et L S A liquidation penalty exceeding 100% should not be permitted.
[M-03] Lack of Slippage on Liquidations 19
[M-04] Ambiguous EGroup Defaulting Logic 20

[M-05] Dangerous Market Account Behavior 23 M
[M-06] Inability to Liquidate Positions Using zToken 30 Recommendatlon

Collateral Within the Same Vault FlashLoan Context

[M-07] Repay Health Check May Block Insolvent 31 In the egroup::SERIALIZE-LEGAL function, include an additional check
Users From Avoiding a Full Liquidation .
8.4.Low Findings 33 to ensure that LIQ-PENALTY-MAX js |ess than BPS
[L-01] Threshold Changes Can Invalidate Pending 33
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require 34
Sanitization

[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35
4 Security Enhancements

[L-04] Reducing Collateral Liquidation LTV Ratios 38

May Instantly Liquidate Users

[L-05] Significant Absence of Emitted Events 39

[L-06] Maximum Liquidation Penalty Is Not Capped 40

[L-07] Avoid Using Unwrap Panic a1
8.5. QA Findings 42

[QA-01] Inline Reserve Calculator Contract 42

[QA-02] Missing Flash Loan Features 43

[QA-03] Optimization of Market Asset Retrieval 44

[QA-04] Eliminate Redundant Contract Caller 45

Authentication in Vault DAO Operations

[QA-05] Function Naming Ambiguities Severely 46

Decrease Code Readability

[QA-06] General Code Style Improvements a7

[QA-07] Optimization for Enabling and Disabling 50

Assets

[QA-08] Promote Debug Getters in eGroup to 51

Production

[QA-09] Simplify Nonce to a uint to Reduce 52

Complexity

[QA-10] Code Constants Usage Ambiguities 53

[QA-11] Simplification of Retrieving Liquidation 55

Position

[QA-12] Optimization of Borrower Scaled Debt 56

Retrieval

[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

[L-07] Avoid Using Unwrap Panic

Description

The codebase contains several instances where unwrap-panic s
utilized.

The use of unwrap-panic is discouraged because it complicates
debugging in the event of an error and makes it more challenging

for external integrators to work with the code. A panic revert would
terminate transactions, preventing third parties from handling specific
error codes.

Recommendation

Whenever possible, replace unwrap-panic with unwrap! and include
a separate error code.

41

|
CONTENTS

1. About Clarity Alliance 2 . .
2. Disclaimer 3 8.5. QA Flndlngs
3. Introduction 4
4. About Zest Protocol 4
5. Risk Classification 5 .
stimpast : [QA-01] Inline Reserve Calculator Contract
5.3. Action required for severity levels 5
6. Security Assessment Summary 6
7.Executive Summary 7 . .
8. Summary of Findings 8 DeSC rl ptl 0 n
8.1. Critical Findings 10
[C-01] stSTX Vault Cannot Withdraw Tokens 10
8.2.High Findings 12
[H-01] Efficiency Groups Cannot Be Updated 12 The reserve-calculator contractincludes functionality thatis
[H-02] DAO Implementation Cannot Be Updated 13
[H-03] Disabled Debt Not Accounted For In Notional 14 invoked multiple times by the vault contracts. In Clarity, calling external
Debt . . . : age
oA S Lmtiaton Mottt e A ey i contracts leads to a notable increase in read count, which significantly
B LN BT ERIE raises the block cost overhead.
8.3.Medium Findings 17

[M-01] Positions With An Empty Safe Mask Are Not 17

Fully Supported

[M-02] Missing Grace Period After Vault Repayment 18 .

Pause

[M-03] Lack of Slippage on Liquidations 19 Recom mendatlon

[M-04] Ambiguous EGroup Defaulting Logic 20 . N .

[M-05] Dangerous Market Account Behavior 23 Wherever possible, inline operations from the reserve-calculator

[M-06] Inability to Liquidate Positions Using zToken 30

Collateral Within the Same Vault FlashLoan Context contract.
[M-07] Repay Health Check May Block Insolvent 31
Users From Avoiding a Full Liquidation
8.4.Low Findings 33
[L-01] Threshold Changes Can Invalidate Pending 33
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require 34
Sanitization

[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35
4 Security Enhancements

[L-04] Reducing Collateral Liquidation LTV Ratios 38

May Instantly Liquidate Users

[L-05] Significant Absence of Emitted Events 39

[L-06] Maximum Liquidation Penalty Is Not Capped 40

[L-07] Avoid Using Unwrap Panic a1
8.5. QA Findings 42

[QA-01] Inline Reserve Calculator Contract 42

[QA-02] Missing Flash Loan Features 43

[QA-03] Optimization of Market Asset Retrieval 44

[QA-04] Eliminate Redundant Contract Caller 45

Authentication in Vault DAO Operations

[QA-05] Function Naming Ambiguities Severely 46

Decrease Code Readability

[QA-06] General Code Style Improvements a7

[QA-07] Optimization for Enabling and Disabling 50

Assets

[QA-08] Promote Debug Getters in eGroup to 51

Production

[QA-09] Simplify Nonce to a uint to Reduce 52

Complexity

[QA-10] Code Constants Usage Ambiguities 53

[QA-11] Simplification of Retrieving Liquidation 55

Position

[QA-12] Optimization of Borrower Scaled Debt 56

Retrieval

[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

https://github.com/stacks-network/stacks-core/blob/master/stackslib/src/chainstate/stacks/boot/costs-3.clar#L337-L345

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

[QA-02] Missing Flash Loan Features

Description

The protocol documentation describes flash loan functionality that has
not been implemented:

e A whitelist for callers
o A percentage fee for the treasury
e Custom fees for specific callers

Recommendation

Implement the missing functionality in all vault contracts.

43

|
CONTENTS

1. About Clarity Alliance 2 . . .
2 Dislsimer 3 [QA-03] Optimization of Market Asset
3. Introduction a4 o
4. About Zest Protocol 4 Retrl eva I
5. Risk Classification 5
5.1.Impact 5
5.2. Likelihood 5 . .
5.3. Action required for severity levels 5
6. Security Assessment Summary 6 DeSC rl ptl 0 n
7.Executive Summary 7 . .
8. Summary of Findings a In the market contract, the asset function retrieves the status of a
S , 10 given asset principal by querying the assets contract:
[C-01] stSTX Vault Cannot Withdraw Tokens 10
8.2.High Findings 12
[H-01] Efficiency Groups Cannot Be Updated 12 (define-private (asset (a principal))
[H-02] DAO Implementation Cannot Be Updated 13 let o N t-call? ¢ .
[H-03] Disabled Debt Not Accounted For In Notional 14 (te ((1_ . (contrac c.a : .a.sse s getrreverse a))
Debt (final-id (buff-to-uint-be 1id)))
[H-04] Self-Liquidation Market Draining Attack via 15 (contract-call? .assets get-status final-id)))
Egroup LTV Downgrading
8.3.Medium Findings 17
[M-01] Positions With An Empty Safe Mask Are Not 17 . . .
Fully Supported Currently, this process involves two calls to the assets contract, with
M-02] Missing G Period After Vault R t 18 . . .
et e e st Al s a basic conversion occurring between these calls.
[M-03] Lack of Slippage on Liquidations 19
[M-04] Ambiguous EGroup Defaulting Logic 20
[M-05] Dangerous Market Account Behavior 23

[M-06] Inability to Liquidate Positions Using zToken 30 Recom mendation

Collateral Within the Same Vault FlashLoan Context

1EIREEY i Ciesk X ey Bl e 3 To enhance efficiency, implement a function within the assets
Users From Avoiding a Full Liquidation
8.4.Low Findings & contract that directly retrieves the status of an asset using its principal.
[L-01] Threshold Changes Can Invalidate Pending 33 . . Lo
Executable Proposals This function should then be called within the market::asset
[L-02] Vault Names, Symbols, and URI Require 34 .
Sanitization function.

[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35
4 Security Enhancements

o i iquidati i 38 . . .
e e agtion LTV Raes Example implementation in the assets contract:
[L-05] Significant Absence of Emitted Events 39
[L-06] Maximum Liquidation Penalty Is Not Capped 40
[L-07] Avoid Using Unwrap Panic a (define-read-only (get-asset-status (address principal))

8.5. QA Findings 42 (let ((id (get-reverse address))
[QA-01] Inline Reserve Calculator Contract 42 (final-id (buff-to-uint-be id)))
[QA-02] Missing Flash Loan Features 43 (get-status final-id)))
[QA-03] Optimization of Market Asset Retrieval 44
[QA-04] Eliminate Redundant Contract Caller 45
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely 46
Decrease Code Readability
[QA-06] General Code Style Improvements a7
[QA-07] Optimization for Enabling and Disabling 50
Assets
[QA-08] Promote Debug Getters in eGroup to 51
Production
[QA-09] Simplify Nonce to a uint to Reduce 52
Complexity
[QA-10] Code Constants Usage Ambiguities 53
[QA-11] Simplification of Retrieving Liquidation 55
Position
[QA-12] Optimization of Borrower Scaled Debt 56
Retrieval
[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

52

53
55

56

57

58

60

62
63
64

65

66

[QA-04] Eliminate Redundant Contract
Caller Authentication in Vault DAO
Operations

Description

The current governance logic executes DAO operations through
a proposal system, where each proposal is a contract in itself. To
facilitate this, the dao-executor::execute-proposal function is
invoked:

(define-public (execute-proposal (script <proposal-script>))
(begin
(try! (IMPL))
(try! (as-contract? ((with-all-assets-unsafe))
(try! (contract-call? script execute))
true))
(ok true)))

This function ensures that the current tx-sender is set to the

dao-executor itself. Consequently, the proposal contract can execute
all DAO-related operations, which verify the legitimacy of such actions.
The check used to verify the DAO call in some parts of the codebase is
as follows:

(define-private (DAO)
(begin
(asserts!
(or (is-eq tx-sender .dao-executor)
(is-eq contract-caller .dao-executor))
ERR-AUTH)
(ok true)))

The (is-eq tx-sender .dao-executor) partis correct. However, the
(is-eq contract-caller .dao-executor) iS unnecessary since it can

never be reached. The dao-executor contract does not have any

function that can (or should) directly call system operations.

Recommendation

Utilize only the (is-eq tx-sender .dao-executor) logic check in the
vault contracts where this modified pDA0 check exists.

Example implementation:

(define-private (DAO)
(begin
(asserts!
(is-eq tx-sender .dao-executor)
ERR-AUTH)
(ok true)))

45

CONTENTS
1. About Clarity Alliance 2 . . . P
2 Disclimer 3 [QA-05] Function Naming Ambiguities
3. Introduction a4 oo
4 Severely Decrease Code Readability
5. Risk Classification 5
5.1.Impact 5
5.2. Likelihood 5
5.3. Action required for severity levels 5 H 1
6. Security Assessment Summary 6 Desc rl pt I O n
7.Executive Summary 7 . .
8. Summary of Findings 8 Throughout the codebase, there are instances of ambiguous,
8.1. Critical Findings 10 B . B
[C-01] stSTX Vault Cannot Withdraw Tokens 10 mIS|eadmg' or unhelpfu' function names.
8.2.High Findings 12
[H-01] Efficiency Groups Cannot Be Updated 12
[H-02] DAO Implementation Cannot Be Updated 13 A more prominent issue is the frequent use of function names that are
[H-03] Disabled Debt Not A ted For In Notional 14
Depy e mep T Accoedrorinons nouns representing the result of their actions, rather than verbs. This is
[H-04] Self-Liquidation Market Draining Attack via 15 FNAiFi i iyge
it a significant anti-pattern that greatly reduces code readability:
8.3.Medium Findings 17
[M-01] Positions With An Empty Safe Mask Are Not 17 .
Fully Supported Examples in the market contract:
[M-02] Missing Grace Period After Vault Repayment 18
Pause
¥ . L 19 . . .
[M-03] Lack of Slippage on Liquidations o asset instead of get-asset.Note that because the function itself
[M-04] Ambiguous EGroup Defaulting Logic 20
[M-05] Dangerous Market Account Behavior 2 isnamed asset , naming variables that contain the result of the
[M-06] Inability to Liquidate Positions Using zToken 30 .
Collateral Within the Same Vault FlashLoan Context function call becomes more complex.
[M-07] Repay Health Check May Block Insolvent 31 .
Users From Avoiding a Full Liquidation » Instead of using (asset (get-asset address)) ,the
8.4.Low Findings 33 developer is forced to use (a (asset addr)) or employ other
[L-01] Threshold Changes Can Invalidate Pending 33 . =
Executable Proposals naming artifices to differentiate it from the function itself,
[L-02] Vault Names, Symbols, and URI Require 34 . .
Sanitization such as adding a leading underscore or other characters.
[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios 38 .
May Instantly Liquidate Users 29 ° assets InStead Of get-assets
[L-05] Significant Absence of Emitted Events qrg H A
[L-06] Maximum Liquidation Penalty Is Not Capped 40 ° position instead of get-position
[L-07) Avoid Using Unwrap Panic 41 = This also results in the need for awkward variable names, e.g.,
8.5. QA Findings 42
[QA-01] Inline Reserve Calculator Contract 42 (pos(position account)) instead of the more readable
[QA-02] Missing Flash Loan Features g L. L.
[QA-03] Optimization of Market Asset Retrieval 44 (position (get-position account))
[QA-04] Eliminate Redundant Contract Caller 45
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely 46 X . X
Decrease Code Readabity ° notional instead of get-notional-assets
[QA-06] General Code Style Improvements a7 .
[QA-07] Optimization for Enabling and Disabling 50 ° SEpEILD instead Of get-egroup
Assets H
[QA-08] Promote Debug Getters in eGroup to 51 ° enabled-mask mStead Of get-enabled-mask
Production) 24 ~1i i ~1i a g _ a3
[QA-08] Simplify Nonce to a uint to Reduce = position-liqg instead of get-liquidation-position
Complexity ° position-full instead of get-full-position
[QA-10] Code Constants Usage Ambiguities 53
[QA-11] Simplification of Retrieving Liquidation 55
Position - .
[QA-12] Optimization of Borrower Scaled Debt 56 Another pattern that severely decreases code readability, sometimes
Retrieval
[QA-13] Improvements Needed for Mask Market 57 stemming from the overlap with noun-named functions, is the use of
Contract Operations . .
[QA-14] Function check-egroup-invariant Contains 58 abbreviated names. For example.
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment 210
Eg:jg} g:;‘:tzcag"rize;r;‘t’”tra“ External Interface 2 o calc-asset-notional instead of calculate-asset-notional
[QA-18] Implement a Majority Rule-Based Multisig 63 ° pos instead of position
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry ° a instead of asset
[QA-20] Remove Unused Market Contract Code 65 .
Artifacts °o addr instead of address
[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

aid instead of asset-id
lig-penalty instead of liquidation-penalty

Recommendation

Rename all functions that have nouns as names to verbs, simply by
prepending get- to them. Search for all occurrences of short variable
or function names and write them out fully.

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-071 Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

[QA-06] General Code Style Improvements

Description

The codebase contains several opportunities for enhancing readability
that can be easily implemented:

1. Use standard indentation instead of aligned indentation.

For example, instead of aligning, which both decreases readability and
increases code size (implicitly affecting real-time execution costs):

(context (liquidation-context borrower))
(pos (get position context))
(pos-full (position-full borrower))
(alist (get assets context))

(mask (get mask pos))

(group (egroup mask))

Apply standard formatting:

(context (liquidation-context borrower))
(pos (get position context))

(pos-full (position-full borrower))
(alist (get assets context))

(mask (get mask pos))

(group (egroup mask))

This also applies to function arguments. Instead of:

(define-read-only (SERIALIZE-LEGAL

(this uint)

(args

{
MASK ¢ uint,
LIQ-CURVE-EXP : uint,
LIQ-PENALTY-MIN: uint,
LIQ-PENALTY-MAX: uint,

LTV-BORROW touint,

LTV-LIQ-PARTIAL: uint,

LTV-LIQ-FULL :uint,
)

Use:

(define-read-only (SERIALIZE-LEGAL

(this uint)

(args {

MASK: uint,
LIQ-CURVE-EXP: uint,
LIQ-PENALTY-MIN: uint,
LIQ-PENALTY-MAX: uint,
LTV-BORROW: uint,
LTV-LIQ-PARTIAL: uint,
LTV-LIQ-FULL: uint,
)

2. Use lowercase for function names.

There are several functions within the codebase that are in uppercase
without any apparent reason:

. calc-asset-notional shoud be serialize-and-validate-input

47

CONTENTS

1. About Clarity Alliance
2.Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-071 Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

° DAO should be check-dao-auth

. dao-executor: :IMPL should be check-impl-auth

° dao-multisig::SIGNER should be check-signer-auth
. market-vault: :INTERNAL should be check-impl-auth
° market-vault: :REFRESH should be refresh

. vault::SYSTEM should be check-caller-auth

3. Avoid declaring 1let variables for values retrieved from tuples only
once.

For example:

(define-private (position (account principal)) ;; enabled only
(let ((mask (enabled-mask)))
(contract-call? .market-vault position account mask)))

You can remove the let and have a single call as:

efine-private (position (account principa ;5 enabled onLy
(defi i (it (incipal)) bled
(contract-call? .market-vault position account (enabled-mask)))

Another example, instead of:

(define-private (liquidation-context (account principal))
(let ((pos (position-lig account))
(mask (get mask pos))
(alist (assets mask)))

position: pos,
assets: alist

)

You can have:

(define-private (liquidation-context (account principal))
(let ((pos (position-lig account))
{
position: pos,
assets: (assets (get mask pos)))

)

4. Use the new style tuple declaration instead of the old style.

Declaring a tuple in Clarity is allowed using both the old-style
tuple keyword and curly brackets {} . The codebase mainly uses
curly brackets but occasionally uses the tuple version, e.g.:

collateral: (list 64 (tuple (aid uint) (amount uint))),
debt : (list 64 (tuple (aid uint) (scaled uint)))

Change this to use only the new-style declaration, which uses curly
brackets.

5. Improve switch-like statements.

Throughout the codebase, there are instances of switch-like code
statements implemented using multiple if-else clauses.

48

|
CONTENTS

oot clerty Allance : From a formatting point of view, instead of if-else with continuous
3.Introduction 4 indenting to the right:
4. About Zest Protocol 4
5. Risk Classification 5
5.1.Impact 5 (if (is-eq type TYPE-PYTH)
5.2. Likelihood 5 (resolve-pyth ident)
5.3. Action required for severity levels 5 (if (is-eq type TYPE-DIA)
6. Security Assessment Summary 6 (resolve-dia ident)
7.Executive Summary 7 ERR-TYPE)))
8. Summary of Findings 8
8.1. Critical Findings 10
[C-01] stSTX Vault Cannot Withdraw Tokens 10 They can be better formatted on each line, as such:
8.2.High Findings 12
[H-01] Efficiency Groups Cannot Be Updated 12
[H-02] DAO Implementation Cannot Be Updated 13 (define-private (resolve-price (type (buff 1)) (ident (buff 32)))
[H-03] Disabled Debt Not Accounted For In Notional 14 (if (is-eq type TYPE-PYTH) (resolve-pyth ident)
Debt . . .
[H-04] Self-Liquidation Market Draining Attack via 15 (if (is-eq type TYPE-DIA) (resolve-dia ident)
Egroup LTV Downgrading ERR-TYPE)))
8.3.Medium Findings 17

[M-01] Positions With An Empty Safe Mask Are Not 17
Fully Supported

[M-02] Missing Grace Period After Vault Repayment 18 Recommendation

Pause

[M-03] Lack of Slippage on Liquidations 19 .

[M-04] Ambiguous EGroup Defauiting Logic 20 Apply the mentioned style changes.
[M-05] Dangerous Market Account Behavior 23

[M-06] Inability to Liquidate Positions Using zToken 30
Collateral Within the Same Vault FlashLoan Context

[M-07] Repay Health Check May Block Insolvent 31
Users From Avoiding a Full Liquidation

8.4.Low Findings 33
[L-01] Threshold Changes Can Invalidate Pending 33
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require 34
Sanitization

[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35
4 Security Enhancements

[L-04] Reducing Collateral Liquidation LTV Ratios 38

May Instantly Liquidate Users

[L-05] Significant Absence of Emitted Events 39

[L-06] Maximum Liquidation Penalty Is Not Capped 40

[L-071 Avoid Using Unwrap Panic a1
8.5. QA Findings 42

[QA-01] Inline Reserve Calculator Contract 42

[QA-02] Missing Flash Loan Features 43

[QA-03] Optimization of Market Asset Retrieval 44

[QA-04] Eliminate Redundant Contract Caller 45

Authentication in Vault DAO Operations

[QA-05] Function Naming Ambiguities Severely 46

Decrease Code Readability

[QA-06] General Code Style Improvements a7

[QA-07] Optimization for Enabling and Disabling 50

Assets

[QA-08] Promote Debug Getters in eGroup to 51

Production

[QA-09] Simplify Nonce to a uint to Reduce 52

Complexity

[QA-10] Code Constants Usage Ambiguities 53

[QA-11] Simplification of Retrieving Liquidation 55

Position

[QA-12] Optimization of Borrower Scaled Debt 56

Retrieval

[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

|
CONTENTS

1. About Clarity Alliance 2
2 Dislsimer 3 [QA-07] Optimization for Enabling and
3. Introduction a4 . o
4. About Zest Protocol 4 Disa b||ng Assets
5. Risk Classification 5
5.1.Impact 5
5.2. Likelihood 5
5.3. Action required for severity levels 5 M M
6. Security Assessment Summary 6 Desc rl ptl 0 n
7.Executive Summary 7 . . .
8.Summary of Findings 8 In the assets contract, the current process for enabling or disabling
8.1. Critical Findings 10 . .
[C-01] stSTX Vault Cannot Withdraw Tokens 10 an asset InVOIVeS'
8.2.High Findings 12
[H-01] Efficiency Groups Cannot Be Updated 12 L. . . .
[H-02] DAO Implementation Cannot Be Updated 13 ¢ Retrieving registry data, including the collateral and debt
[H-03] Disabled Debt Not Accounted For In Notional 14 .
Debt status booleans, using the status method.
e cucation ekt rainng Atackvia 19 Calculating the updated bitmap to represent the new state.
8.3. Medium Findings 7 « Confirming that the action is authorized by the DAO.
[M-01] Positions With An Empty Safe Mask Are Not 17
Fully Supported e Ensuring the asset’s current state is different from the intended
[M-02] Missing Grace Period After Vault Repayment 18
Pause new state.
[M-03] Lack of Slippage on Liquidations 19 . B .
[M-04] Ambiguous EGroup Defaulting Logic 20 * Updatlng the bltmap accordlngly'
[M-05] Dangerous Market Account Behavior 23
[M-06] Inability to Liquidate Positions Using zToken 30 L. . .
Collateral Within the Same Vault FlashLoan Context However, retrieving registry data and computing additional fields is
[M-07] Repay Health Check May Block Insolvent 31 . . .
Users From Avoiding a Full Liquidation unnecessarily complex and costly in terms of execution.
8.4.Low Findings 33
[L-01] Threshold Changes Can Invalidate Pending 33

Executable Proposals

[L-02] Vault Names, Symbols, and URI Require 34 Recom mendation

Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35
4 Security Enhancements Simplify the logic in assets::enable by only checking if the current
[L-04] Reducing Collateral Liquidation LTV Ratios 38 . .
e sty it = U bitmap differs from the new one.
[L-05] Significant Absence of Emitted Events 39
[L-06] Maximum Liquidation Penalty Is Not Capped 40
[L-07] A}void Using Unwrap Panic a1 Example implementation:
8.5. QA Findings 42
[QA-01] Inline Reserve Calculator Contract :‘é
[QA-02] M'S_S'n_g Fl_ash Loan Features . (define-public (enable (asset principal) (collateral bool))
[QA-03] Optimization of Market Asset Retrieval 44 let . - N
[QA-04] Eliminate Redundant Contract Caller 45 (le ((T) (ge rever?e asse'))
Authentication in Vault DAO Operations (final-id (buff-to-uint-be id))
[QA-05] Function Naming Ambiguities Severely 46 (enabled-mask (get-bitmap))
Decrease Code Readability - (a (status final-id enabled-mask))
[QA-06] General Code Style Improvements a7 B £ collateral
[QA-07] Optimization for Enabling and Disabling 50 (c (get collateral a))
Assets - (b (get debt a))
[QA-08] Promote Debug Getters in eGroup to 51 (pos (mask-pos final-id collateral))
Production . .
updated-bitma bit-or enabled-mask ow u2 pos
[QA-09] Simplify Nonce to a uint to Reduce 52 . (_?_ d th ?_E (p Pos)))
Complexity o ao au
[QA-10] Code Constants Usage Ambiguities 53 (try! (DAO))
[QA-11] Simplification of Retrieving Liquidation 55
Posiion 55 ——— preconditions ---
[QA-12] Optimization of Borrower Scaled Debt 56
Retrieval (asserts!
[QA-13] Improvements Needed for Mask Market 57 - (if collateral
Contract Operations - (not c) ;; collateral must not already be enabled
[QAT1fl] Function check—egroup—lnvarlant Contains 58 _ (not b)) ;; debt must not already be enabled
Inefficiency and Redundancies . .
[QA-15] Redundant Parameter Fragment 60 * (not (is-eq enabled-mask updated-bitmap))
[QA-16] Enhance Market Contract External Interface ~ ©* ERR-ALREADY-ENABLED)
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63 . _—_ enable ——-—
[QA-19] Integrate Max Staleness into Asset Oracle 64 ’? . .
Data Entry (var-set bitmap updated-bitmap)
[QA-20] Remove Unused Market Contract Code 65 (ok true)
Artifacts))
[QA-21] Isolate stSTX Price Resolution from 66
resolve-ztoken

Apply the same optimization to assets::disable .

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

[QA-08] Promote Debug Getters in eGroup
to Production

Description

The egroup contractincludes getter functions labeled as debug:

debug-get-popbucket , debug-get-bucket ,and debug-get-reverse .

Facilitating the retrieval of on-chain data from an off-chain context will
aid third-party integrations and monitoring systems.

Recommendation

Rename all debug getter functions to remove the debug- prefix and
consider them as a standard part of the contract.

51

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

[QA-09] Simplify Nonce to a uint to Reduce
Complexity

Description

The nonce variable is currently stored as a (buff 4) , necessitating

conversion operations each time it is accessed or incremented. The

optimization of read length has surpassed the point of diminishing
returns in terms of added complexity.

Recommendation

Convert all instances of nonce from (buff 4) to uint inthe assets
contract, and from (buff 1) to uint inthe egroup contract.

After making these changes, remove the uint-to-buff4 and
uint-to-buffl conversions if they are no longer in use.

52

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

[QA-10] Code Constants Usage Ambiguities

Description

The codebase contains several instances where constants are either
misplaced, unused, or inconsistently used.

Consider the following issues:
1. Unused Market Error Code

The following error codes in the market are unused and should be
removed:

(define-constant ERR-EXCESSIVE- LIQUIDATION (err u400019))
(define-constant ERR-EXCESSIVE-COLLATERAL-SEIZURE (err 400020))
(define-constant ERR-SKIPPED-NO-BALANCE (err 4400021))

Additionally, the Max-u64 constant is defined in the assets contract
but is never referenced in the codebase. It should be removed.

2. Misplaced Constant Definition Positioning
The constants BPS , PRECISION , and INDEX-PRECISION are used

throughout the market contract but are defined in the health section
of the file, midway through it.

;5 health

(define-constant BPS uleEEEO)

(define-constant PRECISION 100000000)

(define-constant INDEX-PRECISION 1000000000000) ;; lel2 for index calculations

BPS and PRECISION should be defined in the oracle constants and
errors section of the market .

3. Constant Name Case Mismatch

In the market contract, the names of constants related to assets and
their zToken counterparts have inconsistent uppercase usage.

Example of naming:

(define-constant SBTC ul)
(define-constant zsBTC u6)

Options:

1. Use uppercase for the asset name and keep the z prefix
lowercase, format: z[NAME] ; e.g., SBTC and zSBTC .
2. Alternatively, use constant names to mimic the token symbol; e.g.,
sBTC and zSBTC .

53

|
CONTENTS

1. About Clarity Alliance 2 .
2.Disclaimer 3 Recommendation
3. Introduction 4
4 About Zest Protocol 4 Implement the suggested changes for each situation.
5. Risk Classification 5
5.1.Impact 5
5.2. Likelihood 5
5.3. Action required for severity levels 5
6. Security Assessment Summary 6
7.Executive Summary 7
8. Summary of Findings 8
8.1. Critical Findings 10
[C-01] stSTX Vault Cannot Withdraw Tokens 10
8.2.High Findings 12
[H-01] Efficiency Groups Cannot Be Updated 12
[H-02] DAO Implementation Cannot Be Updated 13
[H-03] Disabled Debt Not Accounted For In Notional 14
Debt
[H-04] Self-Liquidation Market Draining Attack via 15
Egroup LTV Downgrading
8.3.Medium Findings 17

[M-01] Positions With An Empty Safe Mask Are Not 17
Fully Supported
[M-02] Missing Grace Period After Vault Repayment 18

Pause

[M-03] Lack of Slippage on Liquidations 19
[M-04] Ambiguous EGroup Defaulting Logic 20
[M-05] Dangerous Market Account Behavior 23

[M-06] Inability to Liquidate Positions Using zToken 30
Collateral Within the Same Vault FlashLoan Context

[M-07] Repay Health Check May Block Insolvent 31
Users From Avoiding a Full Liquidation

8.4.Low Findings 33
[L-01] Threshold Changes Can Invalidate Pending 33
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require 34
Sanitization

[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35
4 Security Enhancements

[L-04] Reducing Collateral Liquidation LTV Ratios 38

May Instantly Liquidate Users

[L-05] Significant Absence of Emitted Events 39

[L-06] Maximum Liquidation Penalty Is Not Capped 40

[L-071 Avoid Using Unwrap Panic a1
8.5. QA Findings 42

[QA-01] Inline Reserve Calculator Contract 42

[QA-02] Missing Flash Loan Features 43

[QA-03] Optimization of Market Asset Retrieval 44

[QA-04] Eliminate Redundant Contract Caller 45

Authentication in Vault DAO Operations

[QA-05] Function Naming Ambiguities Severely 46

Decrease Code Readability

[QA-06] General Code Style Improvements a7

[QA-07] Optimization for Enabling and Disabling 50

Assets

[QA-08] Promote Debug Getters in eGroup to 51

Production

[QA-09] Simplify Nonce to a uint to Reduce 52

Complexity

[QA-10] Code Constants Usage Ambiguities 53

[QA-11] Simplification of Retrieving Liquidation 55

Position

[QA-12] Optimization of Borrower Scaled Debt 56

Retrieval

[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

[QA-11] Simplification of Retrieving
Liquidation Position

Description

The market::position-lig function is currently used to obtain
the collateral amounts (that are currently enabled) and all debt
amounts (both enabled and disabled) for an account that is to be
liguidated. The function is implemented as follows:

(define-private (position-1liq (account principal)) ;,; Liquidation specific

(enabled collateral + all debt)

(let ((enabled (enabled-mask))
;5 Extract only collateral bits (0-63)
(enabled-coll (bit-and enabled MAX-U64))
;5 ALL debt bits set to 1 (64-127)
(all-debt DEBT-MASK)
;; Combine: enabled collateral + all debt
(lig-mask (bit-or enabled-coll all-debt)))

(contract-call? market-vault position account lig-mask)))

After obtaining the currently enabled mask, the function sets all debt
bits (leading 63-127 bits) to 1 and then calls market-vault::

position |

This approach is redundant because the market-vault: :position
function inherently returns the full aggregated debt, regardless of
whether it is disabled:

(d
(lookup-debt id mask MAX-U128))) ;, debt is always aggregated even if disabled

Recommendation

To streamline the position-lig function, directly call market-
vault::position using the currently enabled market bitmap.
Additionally, consider renaming the position-1lig function to
something more descriptive, such as get-liquidation-position

Example implementation:

(define-private (position-1liq (account principal))
(contract-call? .market-vault position account (enabled-mask)))

55

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

[QA-12] Optimization of Borrower Scaled
Debt Retrieval

Description

In the market contract, both the liquidate and repay functions
retrieve the current scaled account debt through two separate calls to
the market-vault::debt-scaled fuynction.

Inthe liquidate function, it is done as follows:

(ob (contract-call? .market-vault resolve borrower))
(oid (get 1id ob))
(curr-scaled (contract-call? .market-vault debt-scaled oid debt-aid))

In the repay function, the retrieval process is more complex but
ultimately involves the same operations:

(define-private (resolve (account principal)) ;; obligation
(contract-call? .market-vault resolve account))

(ob (resolve account))
(oid (get 1id ob))
e

(scurr (contract-call? .market-vault debt-scaled oid aid))

It is important to note that the market::resolve function is only
invoked from the repay function and solely in this context.

The current implementation requires two calls to the same
market-vault contract, with a value being passed between these
calls. This redundancy introduces unnecessary overhead and can be

streamlined.

Recommendation

Introduce a function in the market-vault contract named get-account-
scaled-debt , which takes the borrower principal and the debt asset ID
as parameters and returns the scaled debt value.

Utilize this new function in both the market::repay and market::
liquidate functions. Additionally, eliminate the market::resolve
function entirely, as it will no longer be necessary.

56

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-071 Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

39
40
M

42
42
43

44
45

46

a7
50

52

53
55

56

57

58

60

62
63
64

65

66

[QA-13] Improvements Needed for Mask
Market Contract Operations

Description

Inthe market contract, there are several operations that could be
enhanced both logically and in terms of execution fees:

1. Reuse the min function when selecting the smallest number:

(dec (if (» sdelta scurr) scurr sdelta))

2. Utilize standard Clarity bitwise operators for mask manipulation.

There are two instances of inlined bitwise operations that can be
simplified using bitwise operators:

° In repay :

(debt-bit-pos (+ aid u64))
(div (pow u2 debt-bit-pos))
(future-mask (- mask div))

This can be rewritten as: future-mask (bit-and mask (bit-not (pow u2
(+asset-id DEBT-OFFSET))))

° In collateral-remove :

(let ((coll-bit-pos aid)
(div (pow u2 coll-bit-pos))
(future-mask (- mask div)))

This can be written as: (let ((future-mask (bit-and position-mask
(bit-not(pow u2 asset-id)))))

° In borrow

(debt-bit-pos (+ aid u64))

(future-mask (let ((div (pow u2 debt-bit-pos))
(shiftr (/ mask div))
(bit (mod shiftr u2))
(base (if (is-eq bit u@) div u0)))
(+ mask base)))

This can be rewritten as: (future-mask (bit-or mask (pow u2 (+ asset
-id DEBT-OFFSET))))

Recommendation

Implement the suggested changes.

57

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

[QA-14] Function check-egroup-invariant
Contains Inefficiency and Redundancies

Description

The implementation of check-egroup-invariant suffers from deep
nesting of unoptimized condition checks and lacks early returns.
Examples include:

e The valid and exclude-id Vvariables are used only once and can
be inlined.

e The checks for valid , over max-id , and exclude ID can be
combined into a single if condition.

e Both new-is-superset and existing-is-superset variables
include a (not(is-eq existing-mask new-mask)) check. This
implies that if they are equal, the invariant-holds variable
defaults to true , making the check redundant. This check can be
separated and moved to the beginning of the code block, alongside
other skip-this-iteration checks.

e Since both new-is-superset and existing-is-superset variables
are used only once, they do not need to be declared. Their new
forms, (subset existing-mask new-mask) fOr new-is-subset
and (subset new-mask existing-mask) for existing-is-superset

can be inclined.

Recommendation

Implement the suggested optimizations in the egroup: :check-egroup-
invariant function.

Example implementation:

58

|
CONTENTS

1. About Clarity Alliance 2
2.Disclaimer 3
3. Introduction 4
4. About Zest Protocol 4
5. Risk Classification 5
5.1.Impact 5
5.2. Likelihood 5
5.3. Action required for severity levels 5
6. Security Assessment Summary 6
7.Executive Summary 7
8. Summary of Findings 8
8.1. Critical Findings 10
[C-01] stSTX Vault Cannot Withdraw Tokens 10
8.2. High Findings 12
[H-01] Efficiency Groups Cannot Be Updated 12
[H-02] DAO Implementation Cannot Be Updated 13
[H-03] Disabled Debt Not Accounted For In Notional 14
Debt
[H-04] Self-Liquidation Market Draining Attack via 15
Egroup LTV Downgrading
8.3.Medium Findings 17

[M-01] Positions With An Empty Safe Mask Are Not 17
Fully Supported
[M-02] Missing Grace Period After Vault Repayment 18

Pause

[M-03] Lack of Slippage on Liquidations 19
[M-041 Ambiguous EGroup Defaulting Logic 20
[M-05] Dangerous Market Account Behavior 23

[M-06] Inability to Liquidate Positions Using zToken 30
Collateral Within the Same Vault FlashLoan Context

[M-07] Repay Health Check May Block Insolvent 31
Users From Avoiding a Full Liquidation
8.4.Low Findings 33

[L-01] Threshold Changes Can Invalidate Pending 33
Executable Proposals

[L-02] Vault Names, Symbols, and URI Require 34
Sanitization

[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35
4 Security Enhancements

[L-04] Reducing Collateral Liquidation LTV Ratios 38

May Instantly Liquidate Users

[L-05] Significant Absence of Emitted Events 39

[L-06] Maximum Liquidation Penalty Is Not Capped 40

[L-071 Avoid Using Unwrap Panic a1
8.5. QA Findings 42

[QA-01] Inline Reserve Calculator Contract 42

[QA-02] Missing Flash Loan Features 43

[QA-03] Optimization of Market Asset Retrieval 44

[QA-04] Eliminate Redundant Contract Caller a5

Authentication in Vault DAO Operations

[QA-05] Function Naming Ambiguities Severely 46

Decrease Code Readability

[QA-06] General Code Style Improvements a7

[QA-07] Optimization for Enabling and Disabling 50

Assets

[QA-08] Promote Debug Getters in eGroup to 51

Production

[QA-09] Simplify Nonce to a uint to Reduce 52

Complexity

[QA-10] Code Constants Usage Ambiguities 53

[QA-11] Simplification of Retrieving Liquidation 55

Position

[QA-12] Optimization of Borrower Scaled Debt 56

Retrieval

[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

(define-private (check-egroup-invariant

(id uint)

(acc { new-mask: uint,
new-Itv-borrow: uint,
new-ltv-lig-partial: uint,
new-1ltv-lig-full: uint,
exclude-id: (optional uint),
max-id: uint,
valid: bool }))

;5 Sanity check
(if (or (not (get valid acc))
(>= id (get max-id acc))
(is-eq (some 1id) (get exclude-id acc)))
acc
;3 Check invariant
(let ((existing (lookup 1id))
(existing-mask (get MASK existing))
(new-mask (get new-mask acc)))c

;5 Skip if equal
(if (is-eq existing-mask new-mask)
acc
(let ((existing-ltv-borrow (buff-to-uint-be
(get LTV-BORROW existing)))
(existing-ltv-lig-partial (buff-to-uint-be
(get LTV-LIQ-PARTIAL existing)))
(existing-ltv-lig-full (buff-to-uint-be
(get LTV-LIQ-FULL existing)))
(new-1ltv-borrow (get new-ltv-borrow acc))
(new-Itv-lig-partial (get new-ltv-lig-partial acc))
(new-1ltv-lig-full (get new-ltv-lig-full acc))
;; Determine relationship
(holds
(if (subset existing-mask new-mask)
;5 New is a proper superset / LTVn <= LTVe
(and (<= new-ltv-borrow existing-ltv-borrow)
(<= new-ltv-lig-partial existing-ltv-liq-partial)
(<= new-1ltv-lig-full existing-ltv-lig-full))
(if (subset new-mask existing-mask)
;5 Existing is a proper superset / LTVn >= LTVe
(and (>= existing-ltv-borrow new-ltv-borrow)

(>= existing-ltv-lig-partial new-ltv-lig-partial)
(>= existing-ltv-lig-full new-ltv-Tlig-full))
;5 No subset relationship
true))))

(merge acc { valid: holds }))))))

59

|
CONTENTS

1. About Clarity Alliance 2
2. Disclaimer 3
3. Introduction 4
4. About Zest Protocol 4
5. Risk Classification 5
5.1.Impact 5
5.2. Likelihood 5
5.3. Action required for severity levels 5
6. Security Assessment Summary 6
7.Executive Summary 7
8. Summary of Findings 8
8.1. Critical Findings 10
[C-01] stSTX Vault Cannot Withdraw Tokens 10
8.2.High Findings 12
[H-01] Efficiency Groups Cannot Be Updated 12
[H-02] DAO Implementation Cannot Be Updated 13
[H-03] Disabled Debt Not Accounted For In Notional 14
Debt
[H-04] Self-Liquidation Market Draining Attack via 15
Egroup LTV Downgrading
8.3.Medium Findings 17

[M-01] Positions With An Empty Safe Mask Are Not 17
Fully Supported
[M-02] Missing Grace Period After Vault Repayment 18

Pause

[M-03] Lack of Slippage on Liquidations 19
[M-04] Ambiguous EGroup Defaulting Logic 20
[M-05] Dangerous Market Account Behavior 23

[M-06] Inability to Liquidate Positions Using zToken 30
Collateral Within the Same Vault FlashLoan Context

[M-07] Repay Health Check May Block Insolvent 31
Users From Avoiding a Full Liquidation

8.4.Low Findings 33
[L-01] Threshold Changes Can Invalidate Pending 33
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require 34
Sanitization

[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35
4 Security Enhancements

[L-04] Reducing Collateral Liquidation LTV Ratios 38

May Instantly Liquidate Users

[L-05] Significant Absence of Emitted Events 39

[L-06] Maximum Liquidation Penalty Is Not Capped 40

[L-07] Avoid Using Unwrap Panic a1
8.5. QA Findings 42

[QA-01] Inline Reserve Calculator Contract 42

[QA-02] Missing Flash Loan Features 43

[QA-03] Optimization of Market Asset Retrieval 44

[QA-04] Eliminate Redundant Contract Caller 45

Authentication in Vault DAO Operations

[QA-05] Function Naming Ambiguities Severely 46

Decrease Code Readability

[QA-06] General Code Style Improvements a7

[QA-07] Optimization for Enabling and Disabling 50

Assets

[QA-08] Promote Debug Getters in eGroup to 51

Production

[QA-09] Simplify Nonce to a uint to Reduce 52

Complexity

[QA-10] Code Constants Usage Ambiguities 53

[QA-11] Simplification of Retrieving Liquidation 55

Position

[QA-12] Optimization of Borrower Scaled Debt 56

Retrieval

[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

[QA-15] Redundant Parameter Fragment

Description

The function price-resolve accepts aid as a parameter, which it
subsequently passes t0 resolve-callcode With the following
comment explaining its purpose:

55 aid is passed so resolve-token can fetch cached lindex
(final-price (try! (resolve-callcode p callcode aid)))

However, resolve-callcode does not make use of aid ,rendering it
redundant.

(define-private (resolve-callcode (p uint) (calicode (optional (buff 1)))
(aid uint))
(let ((cc (unwrap! callcode (ok p))))
(if (is-eq cc CALLCODE-STSTX)
(resolve-ststx p)
(if (is-eq cc CALLCODE-ZSTX)
(resolve-ztoken p STX)
(if (is-eq cc CALLCODE-ZSTSTX)
(resolve-ztoken p STSTX)
(if (is-eq cc CALLCODE-ZUSDC)
(resolve-ztoken p USDC)
(if (is-eq cc CALLCODE-ZUSDH)
(resolve-ztoken p USDH)
ERR-ORACLE-CALLCODE))))))))

Recommendation

Remove the aid parameter and any related comments from both

price-resolve gnd resolve-callcode

60

|
CONTENTS

1. About Clarity Alliance 2
2 Disclimer s [QA-16] Enhance Market Contract External
3. Introduction 4
4. About Zest Protocol 4 I nte rfa Ce
5. Risk Classification 5
5.1.Impact 5
5.2. Likelihood 5
5.3. Action required for severity levels 5
6. Security Assessment Summary 6 DeSC rl pt I O n
7.Executive Summary 7
8.Summary of Findings 8 The market contractis designed for use by third-party integrators,
8.1. Critical Findings 10 Pty . B B
i 10 providing entry points for borrowing, repaying, collateral management, and
8.2. High Findings :Ili |iquidations‘
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated 13
[H-03] Disabled Debt Not A ted For In Notional 14
Dope e AeconmEaorinTong At present, all public-facing entry points only return (ok true) , which offers
I[EH-04] Self—Liquidation Market Draining Attack via 15 no meaningful information to integrators.
group LTV Downgrading
8.3.Medium Findings 17

[M-01] Positions With An Empty Safe Mask Are Not 17
Fully Supported

[M-02] Missing Gi Period After Vault R t 18 :
oz issing Grace Perio er Vault Repaymen Recommendatlon

[M-03] Lack of Slippage on Liquidations 19
[M-04] Ambiguous EGroup Defaulting Logic 2 To enhance third-party external integration, implement the following
[M-05] Dangerous Market Account Behavior 23
[M-06] Inability to Liquidate Positions Using zToken 30 ChangeS:
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent 31
Users From Avoiding a Full Liquidation 1.In the market::repay function, return the amount-to-repay , which
8.4.Low Findings 33 .
[L-01] Threshold Changes Can Invalidate Pending 33 represents the actual amount repaid.
Executable Proposals i i .
[L-02] Vault Names, Symbols, and URI Require 34 2.Inthe market::liquidate function (and the subsequent
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35 liquidate-multi): return a tuple contai nlng the debt repa id and the
4 Security Enhancements . - .
[L-04] Reducing Colateral Liguidation LTV Ratios e collateral collected. These values can vary significanctly during the
May Instantly Liquidate Users H ’ H
[L-05] Significant Absence of Emitted Events 39 function s execution.
[L-06] Maximum Liquidation Penalty Is Not Capped 40
[L-07] Avoid Using Unwrap Panic a1
8.5. QA Findings 42
[QA-01] Inline Reserve Calculator Contract 42
[QA-02] Missing Flash Loan Features 43
[QA-03] Optimization of Market Asset Retrieval 44
[QA-04] Eliminate Redundant Contract Caller 45
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely 46
Decrease Code Readability
[QA-06] General Code Style Improvements a7
[QA-07] Optimization for Enabling and Disabling 50
Assets
[QA-08] Promote Debug Getters in eGroup to 51
Production
[QA-09] Simplify Nonce to a uint to Reduce 52
Complexity
[QA-10] Code Constants Usage Ambiguities 53
[QA-11] Simplification of Retrieving Liquidation 55
Position
[QA-12] Optimization of Borrower Scaled Debt 56
Retrieval
[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

|
CONTENTS

1. About Clarity Alliance 2 .
2 Disclimer s [QA-17] Create Market Trait
3. Introduction 4
4. About Zest Protocol 4
5. Risk Classification 5 o .
S : Description
.2, Likelihoo
5.3. Action required for severity levels 5
: The market contractis designed for use by third-party integrators. It

6. Security Assessment Summary 6
7-Executive Summary 4 provides entry points for borrowing, repaying, collateral management, and
8. Summary of Findings 8 X . X
8.1. Critical Findings 10 ||q uidations.

[C-01] stSTX Vault Cannot Withdraw Tokens 10
8.2.High Findings 12

Lol ey Cioues Cemes H2 Upskies 12 At present, there is no official trait available for third-party integrators to use.

[H-02] DAO Implementation Cannot Be Updated 13

[H-03] Disabled Debt Not Accounted For In Notional 14

Debt

[H-04] Self-Liquidation Market Draining Attack via 15

o o Fi - Recommendation

[M-01] Positions With An Empty Safe Mask Are Not 17

Fully Supported Develop a market trait for use by external integrators.
[M-02] Missing Grace Period After Vault Repayment 18

Pause

[M-03] Lack of Slippage on Liquidations 19

[M-04] Ambiguous EGroup Defaulting Logic 20

[M-05] Dangerous Market Account Behavior 23

[M-06] Inability to Liquidate Positions Using zToken 30
Collateral Within the Same Vault FlashLoan Context

[M-07] Repay Health Check May Block Insolvent 31
Users From Avoiding a Full Liquidation

8.4.Low Findings 33
[L-01] Threshold Changes Can Invalidate Pending 33
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require 34
Sanitization

[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35
4 Security Enhancements

[L-04] Reducing Collateral Liquidation LTV Ratios 38

May Instantly Liquidate Users

[L-05] Significant Absence of Emitted Events 39

[L-06] Maximum Liquidation Penalty Is Not Capped 40

[L-07] Avoid Using Unwrap Panic a1
8.5. QA Findings 42

[QA-01] Inline Reserve Calculator Contract 42

[QA-02] Missing Flash Loan Features 43

[QA-03] Optimization of Market Asset Retrieval 44

[QA-04] Eliminate Redundant Contract Caller 45

Authentication in Vault DAO Operations

[QA-05] Function Naming Ambiguities Severely 46

Decrease Code Readability

[QA-06] General Code Style Improvements a7

[QA-07] Optimization for Enabling and Disabling 50

Assets

[QA-08] Promote Debug Getters in eGroup to 51

Production

[QA-09] Simplify Nonce to a uint to Reduce 52

Complexity

[QA-10] Code Constants Usage Ambiguities 53

[QA-11] Simplification of Retrieving Liquidation 55

Position

[QA-12] Optimization of Borrower Scaled Debt 56

Retrieval

[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

62

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

N O oo abhbhwdN

=
NNOO°°

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

[QA-18] Implement a Majority Rule-Based
Multisig

Description

In the current design of the DAO multisig contract, signer approvals are
necessary for proposals that alter the signer set, whether it involves adding
a new signer, removing an existing one, or updating the signer approval
threshold.

The threshold is a numerical value, and approval requires reaching this
specified count.

This approved count threshold model can lead to certain vulnerabilities.
For instance, if just one multisig voter is compromised, the entire protocol
could be at risk.

For example, if a signer is compromised, one of the following actions must
be taken to mitigate the issue:

 Remove the compromised signer, provided the remaining signers still
meet the approval threshold.

e Add a new signer to replace the compromised one.

+ Lower the approval threshold so that the compromised signer’s approval
is no longer necessary.

However, if the approval threshold equals the total number of signers, the
proposal system can become deadlocked.

A compromised signer could refuse to approve any proposals, including
those necessary to remove themselves from the signer set. This behavior
would prevent all proposals from being executed.

In contrast, if the threshold is set as a percentage, such as a hardcoded
66%, the majority will decide regardless of the number of voters.
Additionally, the threshold could apply the 50%+1 rule instead of a higher
percentage.

Recommendation

Implement a majority rule-based multisig system for enhanced security.

63

|
CONTENTS

1. About Clarity Alliance 2 .
2 Disclimer s [QA-19] Integrate Max Staleness into Asset
3.Introduction 4
4. About Zest Protocol 4 OraCIe Data Entry
5. Risk Classification 5!
5.1.Impact 5
5.2. Likelihood 5
5.3. Action required for severity levels 5 1 H
6. Security Assessment Summary 6 DeSC rl ptl O n
7.Executive Summary 7 . . .
8.Summary of Findings 8 Currently, the oracle staleness configuration is managed through a global
8‘[1('7?(;‘]'2?'5?;!:/':3:CannotWithdrawTokens :Ilg default-max-staleness data Variable and a Separate feed-max-staleness
8.2. High Findings 2 map for per-feed overrides. This setup introduces unnecessary complexity
[H-01] Efficiency Groups Cannot Be Updated 12
[H-02] DAO Implementation Cannot Be Updated 13 and requires manual synchronization between asset registration and
[H-03] Disabled Debt Not Accounted For In Notional 14
Debt staleness configuration. Whenever an asset is added, its staleness must
- ~Liquidati ini i 15
o e Do erket Draiing Atteck 2 be configured separately in a different map using set-feed-max-staleness .
8.3.Medium Findings 17

[M-01] Positions With An Empty Safe Mask Are Not 17
Fully Supported
[M-02] Missing Grace Period After Vault Repayment 18

Recommendation

[M-03] Lack of Slippage on Liquidations 19
[M-04] Ambiguous EGroup Defauiting Logic 20 Incorporate max-staleness as a field within the asset’s oracle data
[M-05] Dangerous Market Account Behavior 23 . .
[M-06] Inability to Liquidate Positions Using zToken 30 structure in the asset I’eglstry.
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent 31
Users From Avoiding a Full Liquidation oracle: 1

8.4.Low Findings 33 type: (buff 1),
[L-01] Threshold Changes Can Invalidate Pending 33 ident: (buff 32),
Executable Proposals callcode: (optional (buff 1)),
[L-Q?] Vgult Names, Symbols, and URI Require 34 max-staleness: uint
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35 }
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios 38
May Instantly Liquidate Users Subsequently, remove the default staleness logic from the market and
[L-05] Significant Absence of Emitted Events 39 .
[L-06] Maximum Liquidation Penalty Is Not Capped 40 utilize the data from the asset oracle entry.
[L-07] Avoid Using Unwrap Panic a1

8.5. QA Findings 42
[QA-01] Inline Reserve Calculator Contract 42
[QA-02] Missing Flash Loan Features 43
[QA-03] Optimization of Market Asset Retrieval 44
[QA-04] Eliminate Redundant Contract Caller 45
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely 46
Decrease Code Readability
[QA-06] General Code Style Improvements a7
[QA-07] Optimization for Enabling and Disabling 50
Assets
[QA-08] Promote Debug Getters in eGroup to 51
Production
[QA-09] Simplify Nonce to a uint to Reduce 52
Complexity
[QA-10] Code Constants Usage Ambiguities 53
[QA-11] Simplification of Retrieving Liquidation 55
Position
[QA-12] Optimization of Borrower Scaled Debt 56
Retrieval
[QA-13] Improvements Needed for Mask Market 57

Contract Operations
[QA-14] Function check-egroup-invariant Contains 58
Inefficiency and Redundancies

[QA-15] Redundant Parameter Fragment 60
[QA-16] Enhance Market Contract External Interface 61
[QA-17] Create Market Trait 62
[QA-18] Implement a Majority Rule-Based Multisig 63
[QA-19] Integrate Max Staleness into Asset Oracle 64
Data Entry

[QA-20] Remove Unused Market Contract Code 65
Artifacts

[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1. Critical Findings
[C-01] stSTX Vault Cannot Withdraw Tokens
8.2.High Findings
[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading
8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation
8.4.Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic
8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

O NO GO abhbhWN

13
14

15

17
17

18

19
20
23

31

33
33

34

35

46

a7
50

51

52

53
55

56

57

58

60

62
63
64

65

66

[QA-20] Remove Unused Market Contract Code
Artifacts

Description

In the market contract, there are opportunities for minor improvements
to enhance code readability and optimize operations:

1. Redundant Map Definition

The =ztoken-asset-ids map is defined but never utilized within the
codebase. This results in unnecessary storage overhead and code clutter

without adding any functionality.

(define-map ztoken-asset-ids uint bool)

It is recommended to remove the unused
definition.

ztoken-asset-ids map

2. Unused Constants Post-Deployment

There are several unused constants that are remnants from development.

These will be removed after the production update, but they are noted
here for reference:

. PYTH-STORAGE constant
. STSTX-DATA-CORE constant
. STSTX-RESERVE constant

3. Additional Unused Constants

° ERR-NO-VALID-EGROUP

. PRECISION (replaced by INDEX-PRECISION)

4. Irrelevant Comments
Remove the following irrelevant comments:

e L305
e L1338
e L343

Recommendation

Remove the specified code artifacts.

65

https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/market/market.clar#L305
https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/market/market.clar#L338
https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/market/market.clar#L343

|
CONTENTS

1. About Clarity Alliance 2 . .
2 Disclimer 3 [QA-21] Isolate stSTX Price Resolution from
3. Introduction 4
4. About Zest Protocol 4 reSO Ive - Zto ke n
5. Risk Classification 5
5.1.Impact 5
5.2. Likelihood 5
5.3. Action required for severity levels 5 1 H
6. Security Assessment Summary 6 DeSC rl ptl O n
7.Executive Summary 7
8.Summary of Findings 8 The resolve-ststx function is invoked within resolve-ztoken for
8.1. Critical Findings 10
T ST e G e e T e T each price resolution operation. This introduces computational overhead
8.2. High Findings 2 for non-stSTX assets, as the conditional check is evaluated with every call,
[H-01] Efficiency Groups Cannot Be Updated 12 .
[H-02] DAO Implementation Cannot Be Updated 13 even when it is not necessary.
[H-03] Disabled Debt Not Accounted For In Notional 14
Debt
[H-04] Self-Liquidation Market Draining Attack via 15 (final-price (if (is-eq aid STSTX)
Egroup LTV Downgrading (try! (resolve-ststx p))
8.3.Medium Findings 17 p))
[M-01] Positions With An Empty Safe Mask Are Not 17

Fully Supported
[M-02] Missing Grace Period After Vault Repayment 18

Pause .
[M-03] Lack of Slippage on Liquidations 19 Recom mend at|0n
[M-04] Ambiguous EGroup Defaulting Logic 20
[M-05] Dangerous Market Account Behavior = Shift the stSTX price resolution logic to the caller level. This allows for
[M-06] Inability to Liquidate Positions Using zToken 30 . . . e
Collateral Within the Same Vault FlashLoan Context direct price resolution for most assets and ensures that the stSTX-specific
[M-07] Repay Health Check May Block Insolvent 31 . . .
Users From Avoiding a Full Liquidation |Og|C IS Only executed when reql'”red'

8.4.Low Findings 33
[L-01] Threshold Changes Can Invalidate Pending 33

Executable Proposals ee -360,19 +3§0 214 @@ R

[L-02] Vault Names, Symbols, and URI Require 34 (let ((ratio (unwrap! (call-ststx-ratio) ERR-ORACLE-CALLCODE)))
Sanitization (ok (mul-div-down p ratio STSTX-RATIO-DECIMALS))))

[L-03] Market Vault Funds Retrieval Bypasses Clarity ~ 35
4 Security Enhancements

[L-04] Reducing Collateral Liquidation LTV Ratios 38
May Instantly Liquidate Users

-35 ztoken transformation - OPTIMIZATION: Uses cached liquidity +index
(define-private (resolve-ztoken (p uint) (aid uint))

[L-05] Significant Absence of Emitted Events 39 - (let ((final-price (if (is-eq aid STSTX)
[L-06] Maximum Liquidation Penalty Is Not Capped 40 - (try! (resolve-ststx p))
[L-07] Avoid Using Unwrap Panic a1 _ p)
indi 42
8.[222):;7:|Ii:gsl?eserve e e S— 42 - 33 CRITICAL: Fetch lindex from cache instead of cross-contract call
[QA-02] Missing Flash Loan Features 43 - (cached (unwrap! (get-cached-indexes aid) ERR-ORACLE-CALLCODE))
[QA-03] Optimization of Market Asset Retrieval 44 + (let ((cached (unwrap! (get-cached-indexes aid) ERR-ORACLE-CALLCODE))
[QA-04] Eliminate Redundant Contract Caller 45 (cached-lindex (get lindex cached))
Authentication in Vault DAO Operations _ (scaled (* final-price cached-lindex)))
[QA-05] Function Naming Ambiguities Severely 46 K
Decrease Code Readability * (scaled (* p cached-lindex)))
[QA-06] General Code Style Improvements a7 (ok (div-down scaled INDEX-PRECISION))))
[QA-07] Optimization for Enabling and Disabling 50
besde 53 callcode dispatcher
[QA-08] Promote Debug Getters in eGroup to 51
Production —-(define-private (resolve-callcode (p uint) (callcode (optional (buff 1)))
[QA-09] Simplify Nonce to a uint to Reduce 52 - (aid uint))
Complexity = +(define-private (resolve-callcode (p uint) (callcode (optional (buff 1))))
[QA-10] Code Constants Usage Ambiguities | K
[QA-11] Simplification of Retrieving Liquidation 55 (tet ((cc (unwrap! callcode (ok p))))
Cesiten (if (is-eq cc CALLCODE-STSTX)
[QA-12] Optimization of Borrower Scaled Debt 56 (resolve-ststx p)
Retrieval @@ -381,7 +376,7 @@
[C:I:;:aa‘c]tlgwggsavt?gints Needed for Mask Market 57 (if (is-eq cc CALLCODE-ZSBTC)
[QA-14] Function check-egroup-invariant Contains 58 (resolve-ztoken p SBTC)
Inefficiency and Redundancies (if (is-eq cc CALLCODE-ZSTSTX)
[QA-15] Redundant Parameter Fragment 210 - (resolve-ztoken p STSTX)
Eg::::s} E:::tzcagséiirgi?ntraCt S ETEEe 62 + (resolve-ztoken (try! (resolve-ststx p)) STSTX)
[QA-18] Implement a Majority Rule-Based Multisig 63 (if (is-eq cc CALLCODE-ZUSDC)
[QA-19] Integrate Max Staleness into Asset Oracle 64 (resolve-ztoken p USDC)
Data Entry (if (is-eq cc CALLCODE-ZUSDH)
[QA-20] Remove Unused Market Contract Code 65
Artifacts
[QA-21] Isolate stSTX Price Resolution from 66

resolve-ztoken

ClarityAlliance

Security Review

Zest Protocol
v2 Upgrade

