
ZEST PROTOCOL v2 (UPGRADE) SECURITY REVIEW

Conducted by:
KRISTIAN APOSTOLOV, ALIN BARBATEI (ABA), SILVEROLOGIST

DECEMBER 3RD, 2025

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

2

ClarityAlliance

Clarity Alliance is a team of expert whitehat hackers specialising in
securing protocols on Stacks.

They have disclosed vulnerabilities that have saved millions in
live TVL and conducted thorough reviews for some of the largest
projects across the Stacks ecosystem.

Learn more about Clarity Alliance at clarityalliance.org.

1. About Clarity Alliance

http://clarityalliance.org

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

3

ClarityAlliance

This report is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. This report is not, nor
should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts
Clarity Alliance to perform a security assessment.

This report does not provide any warranty or guarantee regarding
the absolute bug-free nature of the technology analyzed, nor do
they provide any indication of the technologies proprietors, business,
business model or legal compliance.

This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report
in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive
assessing process intending to help our customers increase the
quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level
of ongoing risk. Clarity Alliance’s position is that each company and
individual are responsible for their own due diligence and continuous
security. Clarity Alliance’s goal is to help reduce the attack vectors and
the high level of variance associated with utilizing new and consistently
changing technologies, and in no way claims any guarantee of security
or functionality of the technology we agree
to analyze.

The assessment services provided by Clarity Alliance are subject to
dependencies and under continuing development. You agree that your
access and/or use, including but not limited to any services, reports,
and materials, will be at your sole risk on an as-is, where-is, and as-
available basis.

Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. The assessment reports
could include false positives, false negatives, and other unpredictable
results. The services may access, and depend upon, multiple layers of
third parties. Notice that smart contracts deployed on the blockchain
are not resistant from internal/external exploit. Notice that active
smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Clarity Alliance does
not guarantee the explicit security of the audited smart contract,
regardless of the verdict.

2. Disclaimer

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

4

ClarityAlliance

3. Introduction
A time-boxed security review of Zest Protocol, where Clarity Alliance
reviewed the scope and provided insights on improving the protocol.

4. About Zest Protocol
Zest Protocol is the DeFi protocol built for Bitcoin. Fully on-chain and
open-source, it is building the future of Bitcoin finance.

We’ve launched Zest Protocol Borrow, enabling users to unlock liquidity
by borrowing against their assets.

Live on Stacks—the leading Bitcoin Layer 2—Zest is now the top DeFi
protocol on the network. Through the Stacks Market, users can deposit
idle assets such as STX, sBTC, stSTX, USDC, and others to earn yield,
accumulate points, and access overcollateralized loans..

Zest exists to make Bitcoin productive—every sat of it. The goal is to
build a vibrant borrowing and lending ecosystem around Bitcoin as an
asset.

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

5

ClarityAlliance

5.1 Impact

•	 High - leads to a significant material loss of assets in the
protocol or significantly harms a group of users.

•	 Medium - only a small amount of funds can be lost (such as
leakage of value) or a core functionality of the protocol is
affected.

•	 Low - can lead to any kind of unexpected behavior with some
of the protocol’s functionalities that’s not so critical.

5.2 Likelihood

5.3 Action required for severity levels

•	 High - attack path is possible with reasonable assumptions
that mimic on-chain conditions, and the cost of the attack is
relatively low compared to the amount of funds that can be
stolen or lost.

•	 Medium - only a conditionally incentivized attack vector, but
still relatively likely.

•	 Low - has too many or too unlikely assumptions or requires a
significant stake by the attacker with little or no incentive.

•	 Critical - Must fix as soon as possible (if already deployed)
•	 High - Must fix (before deployment if not already deployed)
•	 Medium - Should fix
•	 Low - Could fix

5. Risk Classification

Severity

Likelihood: High

Likelihood: Medium

Impact: High

Critical

High

Impact: Medium

High

Medium

Impact: Low

Medium

Low

Likelihood: Low Medium Low Low

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

6

ClarityAlliance

•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

6. Security Assessment Summary
Scope
The following contracts, located in the zest-core repository, were
in the scope of the security review:

Initial Commit Reviewed:
80f5da77fbcb917958a0e3f64c4bb0e87832492b

Intermediate Commits Reviewed:
496f774576c6e2aa42ee6a634cd6daf94060f0d0

eb99c6f8acf89b6d86ede97173179a8a8b1e25c8

Final Commit After Remediations:
fab7cdf569b4165b2c0bd47fd7ff46717d5e8b43

dao/dao-multisig.clar

dao/dao-executor.clar

dao/dao-treasury.clar

dao/traits.clar

market/market.clar

market/market-vault.clar

registry/egroup.clar

registry/assets.clar

registry/reserve-calculator.clar

vault/vault-stx.clar

vault/vault-sbtc.clar

vault/vault-ststx.clar

vault/vault-usdc.clar

vault/vault-usdh.clar

vault/traits.clar

https://github.com/Zest-Protocol/zest-core
https://github.com/Zest-Protocol/zest-core/tree/80f5da77fbcb917958a0e3f64c4bb0e87832492b
https://github.com/Zest-Protocol/zest-core/commit/496f774576c6e2aa42ee6a634cd6daf94060f0d0
https://github.com/Zest-Protocol/zest-core/tree/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8
https://github.com/GraniteProtocol/core-v1/pull/18/commits/2f3dc203a4de4359f69598f8d5e3b0d05845de3c
https://github.com/Zest-Protocol/zest-core/commit/fab7cdf569b4165b2c0bd47fd7ff46717d5e8b43

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

7

ClarityAlliance

7. Executive Summary
Over the course of the security review, Kristian Apostolov, Alin
Barbatei (ABA), Silverologist engaged with - to review Zest Protocol.
In this period of time a total of 40 issues were uncovered.

Protocol Summary

Findings Count

Protocol Name

Severity

Total Findings 40

Amount

Date

Zest Protocol

December 3rd, 2025

Low

High

Critical

7

4

1

QA

Medium

21

7

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

8

ClarityAlliance

Summary of Findings

[C-01] stSTX Vault Cannot Withdraw Tokens Resolved

[H-01] Efficiency Groups Cannot Be
Updated Resolved

[H-02] DAO Implementation Cannot Be
Updated Resolved

[H-03] Disabled Debt Not Accounted For In
Notional Debt Resolved

[H-04] Self-Liquidation Market Draining
Attack via Egroup LTV Downgrading Resolved

[M-01] Positions With An Empty Safe Mask
Are Not Fully Supported Resolved

[M-02] Missing Grace Period After Vault
Repayment Pause Resolved

[M-03] Lack of Slippage on Liquidations Resolved

[M-04] Ambiguous EGroup Defaulting Logic Resolved

[M-05] Dangerous Market Account Behavior Resolved

[M-06]
Inability to Liquidate Positions Using
zToken Collateral Within the Same
Vault FlashLoan Context

Resolved

[M-07]
Repay Health Check May Block
Insolvent Users From Avoiding a Full
Liquidation

Resolved

[L-01] Threshold Changes Can Invalidate
Pending Executable Proposals Acknowledged

[L-02] Vault Names, Symbols, and URI
Require Sanitization Resolved

[L-03]
Market Vault Funds Retrieval
Bypasses Clarity 4 Security
Enhancements

Resolved

[L-04] Reducing Collateral Liquidation LTV
Ratios May Instantly Liquidate Users Acknowledged

[L-05] Significant Absence of Emitted
Events Resolved

[L-06] Maximum Liquidation Penalty Is Not
Capped Resolved

[L-07] Avoid Using Unwrap Panic Resolved

ID Title Severity Status

Low

Low

Low

Low

Low

Low

Low

Medium

Medium

Medium

Medium

Medium

Medium

Medium

High

High

High

High

Critical

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

9

ClarityAlliance

Summary of Findings

[QA-01] Inline Reserve Calculator Contract Resolved

[QA-02] Missing Flash Loan Features Resolved

[QA-03] Optimization of Market Asset
Retrieval Resolved

[QA-04]
Eliminate Redundant Contract
Caller Authentication in Vault
DAO Operations

Resolved

[QA-05] Function Naming Ambiguities
Severely Decrease Code Readability Resolved

[QA-06] General Code Style Improvements Resolved

[QA-07] Optimization for Enabling and
Disabling Assets Resolved

[QA-08] Promote Debug Getters in eGroup to
Production Resolved

[QA-09] Simplify Nonce to a uint to Reduce
Complexity Resolved

[QA-10] Code Constants Usage Ambiguities Resolved

[QA-11] Simplification of Retrieving
Liquidation Position Resolved

[QA-12] Optimization of Borrower Scaled
Debt Retrieval Resolved

[QA-13] Improvements Needed for Mask
Market Contract Operations Resolved

[QA-14]
Function check-egroup-invariant
Contains Inefficiency and
Redundancies

Resolved

[QA-15] Redundant Parameter Fragment Resolved

[QA-16] Enhance Market Contract External
Interface Resolved

[QA-17] Create Market Trait Resolved

[QA-18] Implement a Majority Rule-Based
Multisig Acknowledged

[QA-19] Integrate Max Staleness into Asset
Oracle Data Entry Resolved

[QA-20] Remove Unused Market Contract
Code Artifacts Resolved

[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken Resolved

ID Title Severity Status

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

10

ClarityAlliance

8.1. Critical Findings

8. Findings

[C-01] stSTX Vault Cannot Withdraw
Tokens

Description
Clarity 4 introduces significant changes to the		 logic:

•	 The		 has been removed.
•	 		 now exists and imposes full restrictions on all

passed tokens by default.

All Zest vaults utilize the		 function to initiate the
transfer of underlying tokens. This function is generally implemented as
follows:

However, the		 is an exception, as it requires permission to
pass	 tokens of STX.

This is a special case due to the functionality of the wrapped STX
contract.

Apart from the		 , all other vaults theoretically function
correctly because the underlying			 function allows
the transfer if the caller is either the			 or		 .

For example, the sBTC token is implemented as follows:

However, not all tokens support both modes of authorization. Only
more recent tokens have started to address this, while older tokens

as-contract

as-contract

as-contract?

send-underlying

(define-private (send-underlying (amt uint) (account principal))
 (begin
 (try! (contract-call? .sbtc transfer amt current-contract account none))
 (ok true)))

vault-stx

amt

(define-private (send-underlying (amt uint) (account principal))
 (begin
 (try! (as-contract? ((with-stx amt))
 (try! (contract-call? .wstx transfer amt tx-sender account none))
 true))
(ok true)))

vault-stx

SIP-10::transfer

contract-caller tx-sender

(define-public (transfer (amount uint) (sender principal)
 (recipient principal) (memo (optional (buff 34))))
 (begin
 (asserts! (or (is-eq tx-sender sender)
 (is-eq contract-caller sender)) ERR_NOT_OWNER)
 (try! (ft-transfer? sbtc-token amount sender recipient))
 (match memo to-print (print to-print) 0x)
 (ok true)

)
)

https://explorer.hiro.so/txid/SM3VDXK3WZZSA84XXFKAFAF15NNZX32CTSG82JFQ4.sbtc-token?chain=mainnet

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

11

ClarityAlliance

To resolve the issue specifically for the 	 vault, use the 	
keyword to permit the movement of the 	 tokens:

To avoid concerns about future implementations of underlying token
vaults, this logic can be applied to all vaults.

Note #1: The 	 is used locally for testing. In a production
environment, the principal should be changed to
							 . In the
context of the	 command, the 	 constant can be
used (which is currently unused).

Note #2: To ensure this case is covered by tests, modify the local
utility token contract to behave like the production one:

Recommendation

still rely on		 for authorization.

Among the implemented vaults, the		 contract, which
wraps the stSTX token, is the only vault that does not accept
authorization by		 :

This means that while depositing in the 	 vault is allowed,
withdrawing from it will fail, effectively blocking user funds in the vault.

tx-sender

vault-ststx

contract-caller

(define-public (transfer (amount uint) (sender principal)
 (recipient principal) (memo (optional (buff 34))))
 (begin
 (asserts! (is-eq tx-sender sender) (err ERR_NOT_AUTHORIZED))

 (match (ft-transfer? ststx amount sender recipient)
 response (begin
 (print memo)
 (
 print{action:”transfer”,
 data:{sender:tx-sender,
 recipient:recipient,
 amount:amount,
 block-height:block-height}}

)
 (ok response)
)
 error (err error)
)
)

)

stSTX

stSTX with-ft

(define-private (send-underlying (amt uint) (account principal))
 (begin
 (try! (as-contract? ((with-ft .ststx “ststx” amt))
 (try! (contract-call? .ststx transfer amt tx-sender account none))
 true))

(ok true)))

.ststx

SP45ZE494VC2YC5JYG7AYFQ44F5Q4PYV7DVMDPBG.ststx-token

with-ft UNDERLYING

ststx

(define-public (transfer (amount uint) (sender principal)
 (recipient principal) (memo (optional (buff 34))))
 (begin
- (asserts! (or (is-eq tx-sender sender)
- (is-eq contract-caller sender)) err-not-token-owner)
+ (asserts! (is-eq tx-sender sender) err-not-token-owner)
 (ft-transfer? ststx amount sender recipient)))

stSTX

https://github.com/stacksgov/sips/blob/main/sips/sip-033/sip-033-clarity4.md#limiting-asset-access-restrict-assets
https://explorer.hiro.so/txid/SP4SZE494VC2YC5JYG7AYFQ44F5Q4PYV7DVMDPBG.ststx-token?chain=mainnet
https://github.com/stacksgov/sips/blob/main/sips/sip-033/sip-033-clarity4.md#limiting-asset-access-restrict-assets

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

12

ClarityAlliance

8.2. High Findings

[H-01] Efficiency Groups Cannot Be
Updated

Description
The current implementation of Efficiency Groups allows any group to
be updated using the 			 function. However, this
function contains an incorrectly reversed “no changes” check:

As it stands, if the previous mask is NOT equal to the new mask (the 	
			 condition), the		 exits with the
	 error. The logic should be reversed to only pass the
assertion check if the previous mask IS equal to the new mask.

egroup::update

;; --- early end if no mask update ---
(asserts! (is-eq prev-MASK new-MASK) (ok true))

(is-eq prev-MASK new-MASK) asserts!

(ok true)

Recommendation
If an early exit (without reverting) is still intended, modify the
logic to only pass if		 is not equal to	 .	

Example implementation:

Additionally, consider actually reverting execution if the masks are
equal, instead of allowing a pass-through.

asserts!

prev-MASK new-MASK

;; --- early end if no mask update ---
(asserts! (not (is-eq prev-MASK new-MASK)) (ok true))

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

13

ClarityAlliance

[H-02] DAO Implementation Cannot Be Updated

Description
The DAO executor contract is tasked with executing proposals once
they have garnered sufficient approvals from signers. A crucial
parameter, 	 , holds the principal of the DAO multisig contract,
which is responsible for proposal creation and signer approvals.

The executor includes a function designed to update the
implementation’s principal:

In practice, this function is not callable.

The DAO multisig interacts with the executor solely through
		 , which executes proposals within the context of
the proposal script rather than directly as the multisig contract.

Since 	 requires the caller to be the current implementation, and
		 lacks a method to invoke 	 , the functionality
to update the implementation is effectively inaccessible.

impl

(define-public (set-impl (new-impl principal))
 (begin
 (try! (IMPL))
 (var-set impl (some new-impl))
 (ok true)))

execute-proposal

IMPL

dao-multisig set-impl

Recommendation
To enable the missing functionality, two approaches can be
considered:

1.	 Introduce functionality in the 		 contract that calls 	
 to update the implementation. This
method can incorporate a timelock by implementing a two-step
process with a hardcoded, enforced delay.

2.	 Adjust the authorization of 			 to utilize the
same logic as the 	 validations found in other parts of the code:

While Clarity does not permit reentrancy within the same function,
it does allow reentrancy within the same contract, thus enabling the
proposed fix. However, in this scenario, a timelock cannot be enforced.

dao-multisig

dao-executor::set-impl

dao-executor::set-impl

DAO

(define-private (DAO)
 (begin
 (asserts!
 (is-eq tx-sender .dao-executor)
 ERR-AUTH)
(ok true)))

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

14

ClarityAlliance

[H-03] Disabled Debt Not Accounted For In
Notional Debt

Description
During the liquidation process in 			 , the liquidation
context is initially retrieved using 		 . This context
is then used to compute the notional values of both collateral and
debt, which are essential for determining the position’s Loan-to-Value
(LTV) ratio.

The current logic retrieves context and information for all enabled
collateral and debt. However, this approach is flawed because
disabling debt is intended only to prevent the addition of new debt in
that asset, not to exclude it during health checks or the liquidation of
existing loans.

The issue arises from the filtering performed in 		 ,
where disabled debt assets are omitted. Consequently, disabled debt
is excluded from the LTV calculation, which artificially lowers the
LTV for positions that include such assets and affects general health
checks.

This problem impacts all market operations that depend on accurate
LTV values.

market::liquidate

liquidation-context

user-safe-mask

Recommendation
Modify the			 	 function to ensure it does not
disabled debt assets.

Example implementation:

market::user-safe-mask

(define-private (user-safe-mask (mask-user uint) (mask-enabled uint))
 (let ((enabled-collateral (bit-and mask-enabled MAX-U64))
- (enabled-debt (/ (bit-and mask-enabled DEBT-MASK) (pow u2 DEBT-OFFSET)))
 (user-collateral (bit-and mask-user MAX-U64))
 (user-debt (/ (bit-and mask-user DEBT-MASK) (pow u2 DEBT-OFFSET)))
 (collateral-match (bit-and user-collateral enabled-collateral))
- (debt-match (bit-and user-debt enabled-debt)))
+)
- (bit-or collateral-match debt-match)))
+ (bit-or collateral-match user-debt)))

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

15

ClarityAlliance

[H-04] Self-Liquidation Market Draining
Attack via Egroup LTV Downgrading

Description
The Zest v2 codebase utilizes an elevation group system where
bundles of assets are associated with specific Loan-to-Value (LTV)
parameters. More details can be found in the official documentation.

Within this framework, LTV groups are valid only if certain conditions
are met regarding borrowing, partial liquidation, and full liquidation.
Specifically, a group that is a subset of another must have its borrow,
partial liquidation, and liquidation LTVs higher than or equal to those
of the superset. This means that the more unique assets a user holds
(either as collateral or debt), the less their underlying collateral is
valued.

The 				 function adds collateral to a user’s
position. Since this operation may change the user’s LTV group if the
collateral is new, a user’s overall health status can actually deteriorate.

This situation can occur both naturally for legitimate users and can be
exploited in an attack.

Consider the following scenario for a typical user:

•	 The user has $1,000 in notional value from four collaterals added
at a 60% LTV group.

•	 The user also has debt equivalent to $550 in notional value.
•	 In this case, if the user accrues $50 more in debt, they will be

liquidated.
•	 To avoid liquidation, the user wants to add some new collateral

and adds $50 of a new collateral token to their position.
•	 By adding new collateral, the user is moved to a 50% LTV group.
•	 The new notional value is $1,050; however, since the user is now

in a 50% LTV group, their position is valued at $525, which is less
than their $550 debt.

•	 The user becomes liquidatable simply by adding more collateral.

In an attack scenario, a threat actor may:

•	 Deposit one type of collateral.
•	 Maximize borrowing against it, bringing the liquidation point to the

borrow LTV.
•	 Add multiple small amounts of all other available collaterals,

making themselves fully liquidatable.
•	 Liquidate themselves for all existing collateral.
•	 Due to the penalty discount, some debt remains unpaid, which

must be socialized.

market::collateral-add

https://github.com/Zest-Protocol/zest-core/blob/main/docs/egroups.md

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

16

ClarityAlliance

The attacker profits from the difference generated by the penalty
discount after accounting for execution fees, provided that the egroups
have sufficiently high differences between LTVs and high enough
penalties.

The condition is not only for the user to be fully liquidatable but also for
the penalty to be high enough such that the debt plus penalty exceeds
the available collateral.

Recommendation
Modify the 		 function to perform an ending health
check only if adding a new collateral asset for that user, ensuring that
the new health status is at least the same as the current status. This
means the new collateral’s total notional value, multiplied by the new
LTV evaluation, must be equal to or better than the previous status,
regardless of whether the position is healthy or not.

collateral-add

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

17

ClarityAlliance

8.3. Medium Findings

[M-01] Positions With An Empty Safe Mask
Are Not Fully SupportedAre Not Fully
Supported

Description
The 		 function is responsible for retrieving asset
information for a user’s assets, including all debt assets and enabled
collateral assets. During this process, the 			 	
function is called, which contains the following logic:

In this code, 	 is always a non-empty list. However, if 	 is an
empty list, the 	 function will fail, causing 			 to abort.

Consider the following scenario:

•	 Alice adds USDC as her only collateral asset.
•	 Later, USDC is disabled as a collateral asset.
•	 Alice attempts to withdraw her collateral but fails.

Once USDC is disabled, Alice’s safe mask (her user mask with disabled
collaterals removed) becomes empty. Consequently, when the system 	
		 , will be an empty list, leading to a map error and
preventing her from ids her funds.

market::assets

assets::status-multi

(define-read-only (status-multi (ids (list 64 uint)))
 (let ((enabled-mask (get-bitmap))
 (mask (uint-to-list-u64 enabled-mask)))
 (map status ids mask)))

status-multi ids

Recommendation
Modify 			 to explicitly handle cases where 	 is empty.
In such instances, it should return an empty list.

Example implementation:

status-multi

(define-read-only (status-multi (ids (list 64 uint)))
 (let ((enabled-mask (get-bitmap))
 (mask (uint-to-list-u64 enabled-mask)))
- (map status ids mask)))
+ (if (is-eq (len ids) u0) (list) (map status ids mask))))

mask

map

ids

status-multi

ids

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

18

ClarityAlliance

[M-02] Missing Grace Period After Vault
Repayment Pause

Description
Each vault has an independent mechanism to pause repayments,
which also implicitly pauses liquidations for that specific vault. This
functionality is distinct from the market-wide liquidation pause, which
affects all vaults simultaneously.

If repayments are paused for only a subset of vaults, the global
liquidation pause is not activated, allowing other vaults to continue with
normal liquidation activities. However, when repayments are resumed,
there is no grace period applied.

Consequently, if a vault has its repayments paused for a certain period,
any positions that become liquidatable during this pause can be
immediately liquidated once repayments are unpaused, without giving
users a chance to repay first. This behavior can lead to unfair losses for
the holders of affected positions.

Recommendation
Enable the DAO to set a liquidation grace period for vaults. Specifically:

•	 Allow the DAO to establish a vault liquidation grace period within
the 	 contract, necessitating a new function.

•	 This grace period should be applied on a per-vault basis and affect
the 		 function.

•	 Transform the			 variable into a map with
vault-id -> grace end, while using a special ID for the market
contract itself, e.g., 100.

•	 Extend the 					 function to also
accept the debt asset ID as an argument and perform two checks:

	▪ Check if there is an end time entry for the new 			
	 map for the market itself, e.g., key 100, to verify a
global repay pause.

	▪ Check if there is an entry for the asset-id in the new map.
This approach ensures that for each liquidation, it is verified whether
either the global liquidation or the specific vault is in a grace period.

The proposed feature should be included in a proposal where the logic
first unpauses the repayment for a specific vault and then marks the
market contract to indicate that the vault now has a liquidation grace
period.

While there is no on-chain enforcement to ensure that vault repayment
must be linked to a market liquidation grace, there is no simpler way to
implement this feature. Adding a grace period within the vault itself on 	
		 would limit both liquidations and repayments, forcing
users to add collateral if they wish to save their position.

market

market::liquidate

liquidation-grace-end

market::is-liquidation-paused

liquidation-

grace-end

system-repay

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

19

ClarityAlliance

[M-03] Lack of Slippage on Liquidations

Description
When a liquidation is initiated, the liquidator calls the 			
or			 function with the desired collateral
token to be liquidated and specifies the maximum debt repayment
amount they are willing to offer for the discounted collateral.

The amount of collateral (at a discount) a liquidator would receive
and the debt they must repay is determined by the liquidation penalty
factor, which depends on the LTV group, as well as the user’s health
status (partial versus full liquidation).

Due to the implementation of the liquidation system, a liquidator
may call 			 expecting a specific profit after
liquidation but may receive less due to several factors:

	գ The user, either intentionally or unintentionally, has front-run the
liquidation by adding more collateral or repaying to reduce the
amount they are liquidated for.

	գ A price update has occurred in the same block before the
liquidator’s call, and the new prices are unfavorable.

	գ A separate user’s debt asset was liquidated, moving the user to a
different LTV group where the liquidation penalty discount is less
favorable than the original one.

In all these scenarios, the liquidator receives less value than expected.
In certain cases, the liquidator might not have initiated the liquidation
if they had up-to-date state information, due to a lack of profitability.

market::liquidate

market::liquidate-multi

market::liquidate

Recommendation
Allow liquidators to specify a 				 		
amount when calling 		 . If the resulting 	 from
the 	 	call is not at least equal to this amount, then revert the
liquidation. If liquidators do not wish to use this option, they can simply
set it to 0.

minimum-collateral-received

liquidate coll-final

liquidate

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

20

ClarityAlliance

[M-04] Ambiguous EGroup Defaulting Logic

Description
The Zest v2 codebase utilizes an efficiency group system where
bundles of assets are linked to specific LTV parameters. More details
can be found in the official documentation.

A user’s position is associated with one of these maps/groups if it is
a subset of it (closest match, see a walkthrough here). If no group is
found, the default EGroup is used.

The default group values are:

The current default values were chosen to prevent normal execution
flow with them. However, this behavior is not consistently enforced,
leading to unusual situations:

1.	 Adding Collateral Works with Any Group

The current			 function does not check
any group logic, allowing users to add any collateral token as long
as it is an approved collateral asset.

2.	 Removing Collateral Works in Any Group if No Debt

Removing collateral via the 			 	 function
does not revert for any group if the health check passes. For the
default group, the health check can only pass if the user has no
debt.

3.	 Repaying is Allowed in Some Cases

When repaying a position via the 	 function, if the full debt
amount associated with a token is not repaid, no health check is
performed, and repayment is allowed. If the full debt is repaid,
a health check is conducted with the new LTV group. If the new
user mask still has no superset and the user has other debt, the
position reverts due to low health. If this was the last user debt,
the repayment is successful. If the new user mask has a superset,
normal LTV health logic is applied, and the position may or may

;; default
(define-constant DEFAULT-MASK-ID u255)

(map-insert registry (uint-to-buff1 DEFAULT-MASK-ID)
 {
 id: (uint-to-buff1 DEFAULT-MASK-ID),
 MASK: MAX-U128,
 LIQ-CURVE-EXP: (uint-to-buff2 u10000),
 LIQ-PENALTY-MIN: (uint-to-buff2 u100),
 LIQ-PENALTY-MAX: (uint-to-buff2 u1000),
 LTV-BORROW: (uint-to-buff2 u0),
 LTV-LIQ-PARTIAL: (uint-to-buff2 u0),
 LTV-LIQ-FULL: (uint-to-buff2 u0)
			 })

market::collateral-remove

repay

market::add-collateral

https://github.com/Zest-Protocol/zest-core/blob/main/docs/egroups.md
https://github.com/Zest-Protocol/zest-core/blob/main/docs/egroups.md#example-walkthrough

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

21

ClarityAlliance

not be healthy.

4.	 Borrowing Cannot Be Done Within the Default Group

The 	 function performs two health checks. The first check
is for the existing user group, which defaults to group 0, setting all
collateral to no value. This check can be passed if the user has no
debt. However, the second check, done with the updated mask,
keeps the user in the default group, causing a revert due to the
newly added debt.

5.	 Liquidations Cannot Be Done Within the Default Group

Liquidating a position fails because, during liquidation, the protocol
calls		 :

If both 		 and 			 are 0, this calculation
reverts due to division by zero.

The current implementation of the	 contract allows any group
to be modified through the			 function. A potential side
effect of changing a group’s mask is that any existing user positions,
which initially mapped to the old mask (as a subset), will now use the
default group values.

Considering the above, several issues or odd cases arise from the
current egroup defaulting mechanism:

A. If the team does not ensure that all potential user position masks
are covered by existing egroup masks, users will default to the default
group.

B. If the team updates the mask of an existing egroup without
considering existing user positions, users with active loans will use the
default egroup.

C. The default group is inconsistent: adding collateral is permitted,
removing collateral is permitted if no debt, borrowing fails intentionally,
but liquidations fail coincidentally due to division by zero.

D. A user defaulted to the EGroup may have a chance to exit the
system if the conditions elaborated in repaying, point , are met.

borrow

calc-liq-factor

(define-private (calc-liq-factor (ltv-curr uint) (ltv-liq-partial uint)
 (ltv-liq-full uint))
 (min BPS (div-bps-down (- ltv-curr ltv-liq-partial)
 (- ltv-liq-f	ull ltv-liq-partial))))

ltv-liq-full ltv-liq-partial

egroup

egroup::update

(3)

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

22

ClarityAlliance

Recommendation
Most issues can be resolved by ensuring a uniform default group
behavior that disallows any entry point operations if the user is or
enters the default group. Instead of returning a default group, the 		
		 function should revert if no group is found. Using
this new function, ensure all functions that modify the user mask check
that they have not reached a default group or revert.

The only issue not covered is 	 , where the team does not ensure
all existing user positions are covered when updating an existing
mask. This is not something that can easily be implemented on-chain.
However, with the other mentioned changes, users in this group would
be as if they were paused (as no operations would be allowed).

In this situation, the team would need to quickly add an egroup mask
to map these users. By doing so, the issue will be resolved without any
problem. However, if this operation takes too long, users might become
liquidatable. To mitigate this, the team can only pause liquidations
per vaults/global, not per egroup. The team can manage the crisis by
pausing liquidations for a short interval while they donate funds to
affected parties to repay part of their debt. Alternatively, if repaying
is modified to work on behalf of others, they can directly repay part of
the targeted user debt.

Adding an on-chain mechanism here would not benefit anyone. Similar
to how the 							
		 issue can be avoided by incremental team changes,
this issue can be better mitigated off-chain or using other mechanisms
rather than implementing restrictions on egroup mask updates.

To conclude, our recommendation is to:

•	 Remove the default egroup and ensure all market operations revert
if a user position (old and new) does not map to any egroup.

•	 Ensure no egroup mask updates leave any users in the default
egroup.

•	 Prepare a contingency strategy for cases where, by mistake, an
egroup update throws users into no group.

egroup::resolve

(B)

Reducing Collateral Liquidation LTV Ratios May Instantly

Liquidate Users

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

23

ClarityAlliance

[M-05] Dangerous Market Account Behavior

Description
The current Zest 	 contract includes entry points for all relevant
market operations. All non-liquidation functions allow an
principal:

In each of these cases, the account must be either the	 or
		 . This is enforced through checks:

However, the underlying funds logic or accounting only utilizes
Here’s a detailed explanation for each situation:

1.	 Adding Collateral

When adding collateral via				 , the			
			 function is called with the		 , leading
to				 .

In 		 , the	 call can only succeed if the
account is		 , as per SIP-10 transfer logic.

It cannot function with			 since that value is set to the
	 contract, which called the		 itself. This means
the		 can decide whether to add collateral to the
	 or themselves.

2.	 Removing Collateral

When removing collateral via			 , the collateral
accounting is done concerning the passed	 , and the
is the one receiving the tokens. However, this allows any downstream
		 (s) that do not change		 to remove

.

market

account

(define-public (collateral-add (ft <ft-trait>) (amount uint)
 (account principal))
(define-public (collateral-remove (ft <ft-trait>) (amount uint)
 (account principal))
(define-public (borrow (ft <ft-trait>) (amount uint) (account principal))
(define-public (repay (ft <ft-trait>) (amount uint) (account principal))

tx-sender

tx-sender

contract-caller

(asserts! (or (is-eq account tx-sender)
 (is-eq account contract-caller)) ERR-AUTH)

market::collateral-add market-

vault::collateral-add account

market-vault::receive-tokens

(define-public (collateral-add (account principal) (amount uint)
(ft <ft-trait>) (asset-id uint))
;; ...
(receive-tokens ft amount account)

receive-tokens asset::transfer

tx-sender

(define-private (receive-tokens (asset <ft-trait>) (amount uint)
 (account principal))
 (unwrap-panic
 (contract-call? asset transfer amount account current-contract none)))

contract-caller

market market-vault

tx-sender contract-

caller

collateral-remove

account account

contract-caller tx-sender

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

24

ClarityAlliance

collateral to a point where the position is barely healthy. At that point,
the account can be easily liquidated, even if it still has its collateral.

3.	 Borrowing Assets

The			 function calls 				 to obtain
the borrowed funds, but this function implicitly sends the funds to the
	 . However, it adds the debt to the passed account.

This means the 	 can receive the funds while the
	 assumes the debt.

4.	 Repaying Debt

Repaying the debt via 			 presents another odd situation.
To repay debt, the 				 function is called, which
takes the underlying tokens from the 		 . While the funds are
always taken from the		 , the 	 is marked as having
the debt paid.

This allows a situation where the	 pays, but the
	 has the debt reduced.

5.	 Liquidations

As liquidations are currently implemented, the 	 repays the
debt and receives the collateral. This could be better changed to the
		 .

All these situations arise due to ambiguity regarding the allowed caller
versus benefactor versus payer.

market::borrow vault-*::system-borrow

tx-sender

tx-sender contract-

caller

market::repay

vault-*::system-repay

tx-sender

tx-sender account

tx-sender contract-

caller

tx-sender

contract-caller

Recommendation
For removing collateral, modify the 			 function as
follows:

•	 Ensure collateral removal only works for the 		 ,
removing the 	 parameter from the function prototype and
adding it locally in the 	 declaration as

	 .

•	 The function now sends the removed collateral of the
			 to itself, but integrators may wish to have an
optional receiver, defaulting to the contract-caller if not specified.

collateral-remove

contract-caller

contract-caller

account

let (account contract

-caller)

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

25

ClarityAlliance

-(define-public (collateral-remove (ft <ft-trait>) (amount uint)
- (account principal))
+(define-public (collateral-remove (ft <ft-trait>) (amount uint) (receiver
+ (optional principal)))
 (let ((ft-address (contract-of ft))
 (asset (get-asset ft-address))
 (asset-id (get id asset))
+ (account contract-caller)
+ (collateral-receiver (match receiver recv recv contract-caller))
 (is-collateral-enabled (get collateral asset))

 ;; Step 1: Get position WITHOUT resolving prices
@@ -765,7 +767,6 @@
 ;; post-removal calculation
 (removed-asset-value
 (find-and-resolve-asset-value assets asset-id amount true)))

- (asserts! (or (is-eq account tx-sender)
- (is-eq account contract-caller)) ERR-AUTH)
 (asserts! (> amount u0) ERR-AMOUNT-ZERO)
 (asserts!
 (is-healthy collateral-value debt-value current-ltvb) ERR-UNHEALTHY)

@@ -800,15 +801,16 @@
 amount
 ft
 asset-id
- 		 account)))
+ collateral-receiver)))

For 		 , if no changes to the vaults are allowed, remove the
	 completely from the function prototype and set it locally as
	 . However, this is insufficient as the		 can
initiate a borrow for the	 , so we also need to enforce that
	 is equal to			 .

This constraint of					 is required
because We can’t change who receives the funds; implicitly, the funds
receiver must be the one who incurs the debt.

If modifying the vault interface is allowed, set the borrower as the
		 and reuse the recipient logic from
The			 function would then require changes to
allow passing a	 principal. The
function would subsequently need changes to accommodate this new
parameter.

borrowing

account

tx-sender contract-caller

tx-sender

tx-sender contract-caller

-(define-public (borrow (ft <ft-trait>) (amount uint) (account principal))
+(define-public (borrow (ft <ft-trait>) (amount uint))
 (let ((address (contract-of ft))
 (asset (get-asset address))
 (asset-id (get id asset))
+ (account tx-sender)

 ;; Step 1: Get position WITHOUT resolving prices
 (position (get-position account))
@@ -834,7 +836,7 @@
 (debt-value (get debt notional-valued-assets)))

 ;; preconditions	
- (asserts! (or (is-eq account tx-sender)
- (is-eq account contract-caller)) ERR-AUTH)
+ (asserts! (is-eq contract-caller tx-sender) ERR-AUTH)

(is-eq contract-caller tx-sender)

contract-caller collateral-remove

vault:system-borrow

recipient market::vault-system-borrow

.

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

26

ClarityAlliance

When repaying debt via the	 function, to avoid having the
	 as a hard requirement, the funds first need to be
transferred to the	 contract, then within an		 call,
transfer them to the vault. This is necessary as the vaults themselves
pass execution to the SIP-10 underlying assets, which use the
for authorization. While further changing the vault may be possible,
some vaults may use older tokens which only allow for		
authorization, such as the		 . Meaning the
			 behavior should use, as it is using now, for
underlying transfer authorization.

Thus, if we want to have		 as the payer, we need to
modify the			 function to accept a	 parameter,
where if we are not transferring the funds from the		
(which accounts for the case where the 		 is also the
) we first need to move the funds to the market contract
and then to the vault.

Example implementation for			 :

Note #1, transferring funds from the		 contract to the vaults
requires the		 and implicit restrictions, thus we need to
separate in between		 and		 branches, since
does not work with	 logic, due to a moving underlying
directly.

And the	 implementation itself would be something similar to:

repay

tx-sender

tx-sender

tx-sender

market

from

as-contract

vault-ststsx

tx-sender

tx-sender

vault::system-repay

vault::system-repay

vault::system-repay

contract-caller

contract-caller

-(define-private (vault-system-repay (aid uint) (amount uint))
+(define-private (vault-system-repay (asset-id uint) (amount uint)
+ (from principal) (ft ‹ft-trait>) (ft-address principal))
+ (begin
+ (if (is-eg from tx-sender)
+	 (call-system-repay asset-id amount)
+	 (begin
+	 ;; transfer amount from the “from” principal to the current contract
+	 is this allows for contract-caller type authorization on tokens
+	 ;; stSTX and wSTX repayments will require contract-caller == tx-sender
+	 ;; otherwise this transfer will revert
+	 (try! (contract-call? ft transfer amount from current-contract none))
+
+	 (if (is-eq ft-address ZEST-STX-WRAPPER-CONTRACT)
+	 (as-contract? (with-stx amount))
+	 (try! (call-system-repay asset-id amount)))
+	 (as-contract? ((with-ft ft-address “*” amount))
+	 (try! (call-system-repay asset-id amount))))))))
+`
+(define-private (call-system-repay (aid uint) (amount uint))
 (if (is-eq aid STX (contract-call? .vault-st system-repay amount)
 (if (is-eq aid sBTC) (contract-call? .vault-stc system-repay amount)
 (if (is-eg aid stSTX) (contract-call? vault-stst system-repay amount)

market

repay

as-contract?

with-stx with-ft

with-ft

wSTX

STX

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

27

ClarityAlliance

Note #2: repaying debt on behalf of someone has the effect of
potentially removing a bit from the user mask (if all debt is paid) which
sends them into a different egroup. E groups have an on-chain enforced
invariant, that group subsets must have a higher or equal LTV value,
which means that, repaying a position cannot reduce a users health.
There is also an extra health check, out of abundance of caution
regardless. Implicitly there are no abusable scenarios when repaying on
behalf of someone.

Regarding the			 function. The same changes are
needed to bypass the		 payer restriction that were applied to
the	 function. Meaning to move funds to the market contract in
case the	 is not the		 .

In this situation, the		 is forced to be the source
of the collateral due to how the	 contract passes to the
		 the transfer logic authentication. As such, the
					 check is a requirement, to ensure
the 			 is not initiating collateral adding.

Example		 implementation:

-(define-public (repay (ft <ft-trait>) (amount uint) (account principal))
+(define-public (repay (ft <ft-trait>) (amount uint) (on-behalf-of
+ (optional principal)))
 (let ((address (contract-of ft))
 (asset (get-asset address))
 (asset-id (get id asset))
+ ;; defaults to payer (contract-caller) if not specified
+ (account (match on-behalf-of behalf behalf contract-caller))

	 ;; Step 1: Get position WITHOUT resolving prices
 (position (get-position account))
@@ -880,15 +913,11 @@
 ;; Check if repaying ALL debt for this asset
 (repaying-all (is-eq repaid-scaled-debt account-scaled-debt)))

- (asserts! (or (is-eq account tx-sender)
- (is-eq account contract-caller)) ERR-AUTH)
-
 ;; preconditions
 (asserts! (> amount u0) ERR-AMOUNT-ZERO)
 (asserts! (> repaid-scaled-debt u0) ERR-INSUFFICIENT-SCALED-DEBT)

- ;; repay
- (try! (vault-system-repay asset-id amount-to-repay))
-
+ (try!
+ (vault-system-repay asset-id amount-to-repay contract-caller ft address))
 ;; update

collateral-add

contract-caller

collateral-add

contract-caller

tx-sender

tx-sender

market-vault

(is-eq contract-caller tx-sender)

tx-sender

market

repay

https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/registry/egroup.clar#L132-L187
https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/registry/egroup.clar#L132-L187
https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/market/market.clar#L896-L908

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

28

ClarityAlliance

Note #3: adding collateral on behalf of someone can introduce health
issues, if the donator adds dust, just enough to add the user to higher
Egroups, which implicitly have a lower LTV ratio, and may put the user in
bad health.

Note #4: there is a lack of health check here that should be done
regardless of implementing on-behalf-of, however, if repaying debt is
allowed on behalf of someone (which has less potential attack surface),
also adding this feature to		 is superfluous.

The last point to discuss are liquidations. Liquidations had no
ambiguities since		 was both the payer and receiver of funds.
Adding an optional receiver of funds may be cumbersome, but doable if
needed.

However, to maintain consistency and with the new modified
			 function, the		 function also needs
to be slightly modified. If we do apply the same changes and have
liquidations done by the		 then the changes are
needed.

Example modifications to support			 payer and receiver.

(define-public (collateral-add (ft ‹ft-trait>) (amount uint))
 (let ((ft-address (contract-of ft))
	 (asset (get-asset ft-address))
	 (asset-id (get id asset))
	 (account contract-caller))

 (asserts! (get collateral asset) ERR-COLLATERAL-DISABLED)

 (if (is-eg account tx-sender)
	 (contract-call? market-vault collateral-add account amount ft asset-id
	 (begin
	 ;; transfer amount from the “from” principal to the current contract
	 ;; this allows for contract-caller type authorization on tokens
	 ;; stsTX and wSTX repayments will require contract-caller == tx-sender
	 ;; otherwise this transfer will revert
	 (try! (contract-call? ft transfer amount account current-contract none)) 		
 	 (if (is-eq ft-address ZEST-STX-WRAPPER-CONTRACT)
	 (as-contract? ((with-stx amount))
	 (try!
	 (contract-call? .market-vault collateral-add account amount ft asset-id)))
	 (as-contract? ((with-ft ft-address “*” amount))
	 (try!
	 (contract-call? .market-vault collateral-add account amount ft asset-id))))))
)
)

collateral-add

contract-caller

contract-caller

vault-system-repay

tx-sender

liquidate

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

29

ClarityAlliance

Note #5: if the liquidator is still intended to be the		 , then
having the		 variable set to		 is enough.

@@ -1128,6 +1157,7 @@
 (debt-amount uint)
 (min-collateral-expected uint))
 (let (
+ (liquidator contract-caller)
 (context (get-liquidation-context borrower))
 (position (get position context))
 (pos-full (get-full-position borrower))
@@ -1216,7 +1246,7 @@
 (asserts! (>= coll-final min-collateral-expected) ERR-SLIPPAGE)
 ;; execute liquidation
- (try! (vault-system-repay debt-aid debt-to-repay))
+ (try!
+ (vault-system-repay debt-aid debt-to-repay liquidator debt-ft debt-address))
 ;; update obligations and socialize bad debt
 (let ((debt-updated (try! (contract-call? .market-vault
@@ -1230,7 +1260,7 @@
 coll-final
 collateral-ft
 coll-aid
- tx-sender)))
+ liquidator)))
 (no-collateral-left (and

tx-sender

tx-senderliquidate

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

30

ClarityAlliance

[M-06] Inability to Liquidate Positions Using
zToken Collateral Within the Same Vault
FlashLoan Context

When a flash loan is taken from a vault, a specific reentrancy flag, 	
	 , is set to prevent users from depositing back into the
vault.

This flag is specifically checked in the following scenarios:

•	
•	
•	
•	

Among these scenarios, by blocking vault share transfers, operations
such as using a flash loan of the underlying asset to liquidate a user
and requesting the vault LP as collateral cannot be performed.

This is a specific use case; however, the team has expressed interest
in this functionality.

Description

in-flashloan

vault::transfer

vault::deposit

vault::redeem

vault::flashloan

Recommendation
Remove the		 check from the 		 function
in all vaults.

in-flashloan vault::transfer

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

31

ClarityAlliance

[M-07] Repay Health Check May Block
Insolvent Users From Avoiding a Full
Liquidation

The Zest v2 codebase utilizes an elevation group system where
bundles of assets are linked to specific Loan-to-Value (LTV)
parameters. More details can be found in the official documentation.

Within this framework, the LTV groups are valid only if certain
conditions are met concerning borrowing, partial liquidation, and full
liquidation. Specifically, a group that is a subset of another must have
its borrow, partial liquidation, and liquidation LTVs equal to or higher
than those of the superset. This implies that the more unique assets
a user holds (either as collateral or debt), the less their underlying
collateral is valued.

In the 			 function, a health check is performed at the end
of the function when repaying the full debt asset.

This leads to a situation where any underwater position with two or
more debt assets cannot fully repay any debt associated with one
asset if the resulting position remains underwater.

In practice, users at risk of full liquidation cannot simply repay all
debt associated with one asset if they remain unhealthy after the
repayment. To protect themselves in this scenario, they would need
to repay slightly less than their full debt on each asset individually to
avoid triggering the health check.

This results in a poor user experience, although it only affects
unhealthy positions where repayments still leave them unhealthy. In
extreme cases, if users or third-party integrators are unaware of this,
they may end up liquidated if this behavior is not clearly communicated.

While the health check during debt repayment has some merit, in
practice, due to the setup of the egroup invariant, the likelihood of a
healthy position becoming unhealthy after repayment is minimal. This
scenario is theoretically possible only if a user belongs to an egroup
whose mask was altered, and a new egroup with a completely separate
mask (not a subset or superset of any existing masks) is added, with a
lower LTV than the original group. For this to occur, the Zest protocol
team would need to introduce it mistakenly.

Description

market::repay

https://github.com/Zest-Protocol/zest-core/blob/main/docs/egroups.md

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

32

ClarityAlliance

We propose two options:

1.	 Modify the 	 function to perform the health check only when
fully repaying an asset debt and only if the current position was
healthy. This means skipping the ending health check if the position
was not healthy before repayment, as it blocks partial repayments.

2.	 Remove the health check altogether, since realistically, due to
the on- chain egroup invariant, this scenario is unlikely to occur in
practice.

Recommendation

repay

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

33

ClarityAlliance

8.4. Low Findings

[L-01] Threshold Changes Can Invalidate
Pending Executable Proposals

Description
The 		 contract maintains a list of signers who can create
and approve proposals. All proposals and their associated data are
stored in the 		 map.

A proposal becomes executable when, among other conditions, the
number of approvals meets or exceeds the threshold value. Each
proposal also includes an expiration timestamp.

Consider the following scenario:

•	 A proposal is created with an expiration timestamp , and the
current

•	 The proposal receives its second approval shortly before	 .
•	 Before the proposal is executed, the DAO increases the approval

threshold.

Although the proposal was executable after the second approval, it
becomes non-executable following the threshold change. Since this
update occurs close to the expiration time, there may not be enough
time for the additional required signer(s) to approve, effectively
blocking execution.

This creates a timing-dependent inconsistency where proposals can
become invalid due to configuration updates that occur between
approval and execution.

dao-multisig

proposals

ET

threshold = 2

ET

One possible solution is to include a 		 field within the	
	 map to store the threshold value at the time of proposal
creation. When verifying execution conditions, use the minimum of
the stored threshold and the current threshold. However, this has
implications and should be correlated with the number of signers at
that time.

Ultimately, a fool-proof solution would imply substantial overhead and
is, objectively, not worth the benefit it adds. Thus, we recommend
acknowledging this finding.

Recommendation
threshold

proposals

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

34

ClarityAlliance

[L-02] Vault Names, Symbols, and URI Require
Sanitization

The current vault implementations comply with SIP-10 and, as such,
have distinct names, symbols, and token URIs.

All of these are constants and are as follows:

It is evident that, except for 		 , all others are in lowercase.
This inconsistent formatting is not standardized and may negatively
impact third-party UI elements. Additionally, all vaults lack the
capability to modify the URI, which could be beneficial if customization
is ever required.

Description

Recommendation
Adjust the names and symbols of the mentioned vaults to adhere to
more formal standards.

Consider enabling the URI to be modified through a	 -gated
function.

vault-stx

DAO

Contract Name Symbol URI

vault-sbtc zest sbtc zsbtc none

vault-ststx zest ststx zststx none

vault-stx Zest STX zSTX none

vault-usdc zest usdc zusdc none

vault-usdh zest usdh zusdh none

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

35

ClarityAlliance

[L-03] Market Vault Funds Retrieval Bypasses
Clarity 4 Security Enhancements

Clarity 4 introduces significant changes to the	 logic:

•	 The	 has been removed.
•	 		 now exists with default full restrictions on all

passed tokens.	

The Zest v2 market vault utilizes the		 function to transfer
stored tokens to the caller.

Although the specific asset to be transferred is known during the call,
the		 logic is invoked with a				
allowance, permitting all transfers.

The new		 behavior would block all transfers of any other
assets if used correctly. However, in this scenario, if a malicious asset
is ever introduced, invoking the		 on it within the
			 	 context would allow the complete
draining of all tokens in the vault.

Note that adding a malicious asset token would require several critical
system compromises.

Description

Recommendation
To better protect user funds, modify the
allowance expression to specifically allow transfers of the specified
token.

This should typically involve modifying the following line:

However, since (wrapped) is one such token, a particular issue
arises with some existing 	 wrappers, which actually move 	
and lack a backing fungible token. To address this, the code would also
require a 			 , but this would leave a vulnerability for
extracting stx the event of a malicious token hack (similar to the ALEX
hack).

as-contract

as-contract

as-contract?

send-tokens

(define-private (send-tokens (asset <ft-trait>) (amount uint)
 (account principal))
 (unwrap-panic
 (as-contract? ((with-all-assets-unsafe))
 (unwrap-panic
 (contract-call? asset transfer amount tx-sender account none)))))

as-contract? with-all-assets-unsafe

as-contract?

SIP-10::transfer

market-vault::send-tokens

market-vault::send-tokens

- (as-contract? ((with-all-assets-unsafe))
+ (as-contract? ((with-ft (contract-of asset) “*” amount))

STX

STX

(with-stx amount)

STX

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

36

ClarityAlliance

The purpose of using an 	 wrapper token is to enable its use in
the context of other fungible tokens without requiring special code.
This was achieved until now and with Clarity 4. With the 		
differentiation, the simple wrapper version, which just wraps 		
		 commands, cannot be used without special code.

Therefore, we recommend creating an wrapper that functions as
a normal FT token, where users would need to call to convert
their 	 to 	 and 	 to convert 	 to in a 1:1 ratio.
The wrapper should also have no permissioned role, no way to extract
funds, be as simple as possible, and allow for incorrectly transferred 	
 (instead of wrapped) to be accounted for.

With this new version of the 	 wrapper, all inline code logic that
used 		 (including in the 	 vault) can be removed in
favor of normal fungible token transfer authorization.

Thus, the recommendation is to:

•	 Create an	 wrapper that stores	 and wraps/unwraps as
needed.

•	 Use this wrapper in the codebase.
•	 By doing this, the

	 version in the				 can be
retained, and in the	 , the		 from the
			 function can be removed completely, as the
underlying would act like any other normal SIP-10 token, allowing
			 as authorization.

Another option is to specifically check if the asset contract is the Zest
STX wrapper contract and differentiate behavior accordingly.

Example		 implementation:

STX

with-stx

stx-transfer?

STX

wrap

STX wSTX unwrap wSTX STX

STX

STX

with-stx vault-stx

STX STX

(as-contract? ((with-ft (contract-of asset) “*”

amount)) market-vault::send-tokens

vault-stx as-contract

send-underlying

contract-caller

market-vault

https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/utility/token/wstx.clar#L16
https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/utility/token/wstx.clar#L16
https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/utility/token/wstx.clar#L16

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

37

ClarityAlliance

(define-constant PRECISION u100000000)
 (define-constant BPS u10000)
+(define-constant ZEST-STX-WRAPPER-CONTRACT .wstx)

 ;; pack utilities - inlined to avoid contract call overhead
@@ -291,9 +292,12 @@
 (unwrap-panic
 (contract-call? asset transfer amount account current-contract none)))

(define-private (send-tokens (asset <ft-trait>) (amount uint)
 (account principal))
- (unwrap-panic
- (as-contract? ((with-all-assets-unsafe))
- (unwrap-panic
- (contract-call? asset transfer amount tx-sender account none)))))
+ (let ((asset-contract (contract-of asset)))
+ (if (is-eq asset-contract ZEST-STX-WRAPPER-CONTRACT)
+ (as-contract? ((with-stx amount))
+ 	 (try! (contract-call? asset transfer amount tx-sender account none)))
+ (as-contract? ((with-ft asset-contract “*” amount))
+	 (try!
+ (contract-call? asset transfer amount tx-sender account none))))))

 (define-private (refresh
 (mask uint)) { mask: mask, last-update: stacks-block-time })

@@ -332,7 +336,7 @@
 (asserts! (> amount u0) ERR-AMOUNT-ZERO)

 (insert updated-entry)
- (send-tokens ft amount recipient)
+ (try! (send-tokens ft amount recipient))
 (ok remaining)))

Note: The actual address must be set in the 				
and be the same as used in the 	 contract.

ZEST-STX-WRAPPER-CONTRACT

vault-stx

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

38

ClarityAlliance

[L-04] Reducing Collateral Liquidation LTV
Ratios May Instantly Liquidate Users

The DAO has the ability to modify the supported collateral Loan-to-
Value (LTV) ratios by invoking the 		 function.

There are two LTVs stored for liquidation purposes: partial and full
liquidation LTVs. These thresholds determine when users begin to face
liquidation.

If a token is deemed unsuitable as collateral from a market or economic
standpoint, or if the current LTVs are considered excessively high
and need reduction, governance can call 		 with more
appropriate liquidation LTVs.

However, reducing these LTVs can immediately decrease the collateral
value of all existing borrowing positions secured by it, potentially
leading to instant liquidation of users.

Description

Recommendation
An on-chain solution would involve modifying the 			
function to include an LTV ramp duration when adjusting the liquidation
LTVs (both partial and full). This ramp would represent a linear
decrease from the time of the update to the desired values over the
ramp period. If no ramp duration is specified, the change would be
immediate. The ramp should only impact liquidations.

By implementing this approach, users would still reach the liquidation
point, but not instantaneously, providing them a fair opportunity
to unwind their positions. This method has been adopted by some
projects over time.

However, incorporating this mechanism into the existing system
would introduce significant overhead. Therefore, we recommend
acknowledging this issue and, when reducing liquidation LTVs, to do
so gradually (e.g.,reducing by 1% every 24 hours until a 10% intended
reduction is achieved).

egroup::update

egroup::update

egroup::update

https://docs.euler.finance/developers/evk/security/#ltv-ramping

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

39

ClarityAlliance

[L-05] Significant Absence of Emitted
Events

The entire codebase is completely devoid of any 	 statements.

This greatly restricts off-chain monitoring and integration capabilities.

Description

Recommendation
Incorporate print events into all public functions and entry points within
the codebase.

A standardized print/event structure can be implemented to facilitate
off-chain processing. An example of such a structure is:

print

(print {
 action: “<function-name or action>”,
 caller: <caller>,
 data: {
 <key1>: <value1>,
 <key2>: <value2>,
 ...
 <keyN>: <valueN>
}

})

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

40

ClarityAlliance

[L-06] Maximum Liquidation Penalty Is
Not Capped

When setting an elevation group, the maximum liquidation penalty
bounds are specified. These bounds are defined within
			 and are measured in basis points.

Although there is a validation ensuring that the minimum penalty is less
than the maximum () there is no
validation to ensure that the maximum penalty itself is less than 100%.

A liquidation penalty exceeding 100% should not be permitted.

Description

[LIQ-PENALTY

-MIN, LIQ-PENALTY-MAX]

< LIQ-PENALTY-MIN LIQ-PENALTY-MAX)

Recommendation
In the 				 function, include an additional check
to ensure that 			 is less than 	 .

egroup::SERIALIZE-LEGAL

LIQ-PENALTY-MAX BPS

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

41

ClarityAlliance

[L-07] Avoid Using Unwrap Panic

The codebase contains several instances where		 is
utilized.

The use of 		 is discouraged because it complicates
debugging in the event of an error and makes it more challenging
for external integrators to work with the code. A panic revert would
terminate transactions, preventing third parties from handling specific
error codes.

Description
unwrap-panic

Recommendation
Whenever possible, replace 		 with	 and include
a separate error code.

unwrap-panic

unwrap-panic unwrap!

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

42

ClarityAlliance

8.5. QA Findings

[QA-01] Inline Reserve Calculator Contract

Description

The 			 contract includes functionality that is
invoked multiple times by the vault contracts. In Clarity, calling external
contracts leads to a notable increase in read count, which significantly
raises the block cost overhead.

Wherever possible, inline operations from the				
contract.

Recommendation

reserve-calculator

reserve-calculator

https://github.com/stacks-network/stacks-core/blob/master/stackslib/src/chainstate/stacks/boot/costs-3.clar#L337-L345

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

43

ClarityAlliance

[QA-02] Missing Flash Loan Features

Description
The protocol documentation describes flash loan functionality that has
not been implemented:

•	 A whitelist for callers
•	 A percentage fee for the treasury
•	 Custom fees for specific callers

Recommendation
Implement the missing functionality in all vault contracts.

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

44

ClarityAlliance

[QA-03] Optimization of Market Asset
Retrieval

Description
In the 		 contract, the 	 function retrieves the status of a
given asset principal by querying the 	 contract:

Currently, this process involves two calls to the 	 contract, with
a basic conversion occurring between these calls.

Recommendation
To enhance efficiency, implement a function within the 		
contract that directly retrieves the status of an asset using its principal.
This function should then be called within the				
function.

Example implementation in the 	 contract:

market asset

assets

(define-private (asset (a principal))
 (let ((id (contract-call? .assets get-reverse a))
 (final-id (buff-to-uint-be id)))
 (contract-call? .assets get-status final-id)))

assets

assets

market::asset

assets

(define-read-only (get-asset-status (address principal))
(let ((id (get-reverse address))

 (final-id (buff-to-uint-be id)))
 (get-status final-id)))

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

45

ClarityAlliance

[QA-04] Eliminate Redundant Contract
Caller Authentication in Vault DAO
Operations

Description
The current governance logic executes DAO operations through
a proposal system, where each proposal is a contract in itself. To
facilitate this, the				 function is
invoked:

This function ensures that the current		 is set to the 		
		 itself. Consequently, the proposal contract can execute
all DAO-related operations, which verify the legitimacy of such actions.
The check used to verify the DAO call in some parts of the codebase is
as follows:

The					 part is correct. However, the
	 is unnecessary since it can
never be reached. The 		 contract does not have any
function that can (or should) directly call system operations.

Recommendation
Utilize only the 				 logic check in the
vault contracts where this modified check exists.

Example implementation:

(is-eq tx-sender .dao-executor)

(define-private (DAO)
 (begin
 (asserts!
 (is-eq tx-sender .dao-executor)
 ERR-AUTH)
(ok true)))

dao-executor::execute-proposal

(define-public (execute-proposal (script <proposal-script>))
 (begin
 (try! (IMPL))
 (try! (as-contract? ((with-all-assets-unsafe))
 (try! (contract-call? script execute))
 true))
 (ok true)))

tx-sender

dao-executor

(define-private (DAO)
 (begin
 (asserts!
 (or (is-eq tx-sender .dao-executor)
 (is-eq contract-caller .dao-executor))
 ERR-AUTH)
(ok true)))

(is-eq tx-sender .dao-executor)

(is-eq contract-caller .dao-executor)

dao-executor

DAO

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

46

ClarityAlliance

[QA-05] Function Naming Ambiguities
Severely Decrease Code Readability

Description
Throughout the codebase, there are instances of ambiguous,
misleading, or unhelpful function names.

A more prominent issue is the frequent use of function names that are
nouns representing the result of their actions, rather than verbs. This is
a significant anti-pattern that greatly reduces code readability:

Examples in the 	 contract:

	գ 	 instead of 		 . Note that because the function itself

is named , naming variables that contain the result of the
function call becomes more complex.

	▪ Instead of using				 , the
developer is forced to use 		 or employ other
naming artifices to differentiate it from the function itself,
such as adding a leading underscore or other characters.

	գ 	 instead of
	գ 		 instead of

	▪ This also results in the need for awkward variable names, e.g.,
	 			 instead of the more readable
 						 .

	գ 		 instead of
	գ 	 instead of
	գ 		 instead of
	գ 		 instead of
	գ 		 instead of

Another pattern that severely decreases code readability, sometimes
stemming from the overlap with noun-named functions, is the use of
abbreviated names. For example:

	գ 			 instead of
	գ 	 instead of
	գ instead of
	գ 	 instead of
	գ 	 instead of
	գ 		 instead of

market

asset get-asset

asset

(asset (get-asset address))

(a (asset addr))

assets get-assets

position get-position

(pos(position account))

(position (get-position account))

notional get-notional-assets

egroup get-egroup

enabled-mask get-enabled-mask

position-liq get-liquidation-position

position-full get-full-position

calc-asset-notional calculate-asset-notional

pos position

a asset

addr address

aid asset-id

liq-penalty liquidation-penalty

Recommendation
Rename all functions that have nouns as names to verbs, simply by
prepending 	 to them. Search for all occurrences of short variable
or function names and write them out fully.

get-

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

47

ClarityAlliance

[QA-06] General Code Style Improvements

Description
The codebase contains several opportunities for enhancing readability
that can be easily implemented:

1.	 Use standard indentation instead of aligned indentation.

For example, instead of aligning, which both decreases readability and
increases code size (implicitly affecting real-time execution costs):

Apply standard formatting:

This also applies to function arguments. Instead of:

Use:

2. Use lowercase for function names.

There are several functions within the codebase that are in uppercase
without any apparent reason:

•	 			 shoud be

(context (liquidation-context borrower))
(pos (get position context))
(pos-full (position-full borrower))
(alist (get assets context))
(mask (get mask pos))
(group (egroup mask))

(context (liquidation-context borrower))
(pos (get position context))
(pos-full (position-full borrower))
(alist (get assets context))
(mask (get mask pos))
(group (egroup mask))

(define-read-only (SERIALIZE-LEGAL
 (this uint)
	 (args
	 {
		 MASK : uint,
 LIQ-CURVE-EXP : uint,
 LIQ-PENALTY-MIN: uint,
 LIQ-PENALTY-MAX: uint,
 LTV-BORROW : uint,
 LTV-LIQ-PARTIAL: uint,
 LTV-LIQ-FULL : uint,
		 }))

(define-read-only (SERIALIZE-LEGAL
 (this uint)
 (args {
		 MASK: uint,
 LIQ-CURVE-EXP: uint,
 LIQ-PENALTY-MIN: uint,
 LIQ-PENALTY-MAX: uint,
 LTV-BORROW: uint,
 LTV-LIQ-PARTIAL: uint,
 LTV-LIQ-FULL: uint,
		 }))

calc-asset-notional serialize-and-validate-input

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

48

ClarityAlliance

•	 	 should be
•	 			 should be
•	 			 should be
•	 				 should be
•	 				 should be
•	 		 should be

3.	 Avoid declaring variables for values retrieved from tuples only
once.

For example:

You can remove the 	 and have a single call as:

Another example, instead of:

You can have:

4.	 Use the new style tuple declaration instead of the old style.

Declaring a tuple in Clarity is allowed using both the old-style
	 keyword and curly brackets 	 . The codebase mainly uses
curly brackets but occasionally uses the tuple version, e.g.:

Change this to use only the new-style declaration, which uses curly
brackets.

5.	 Improve switch-like statements.

Throughout the codebase, there are instances of switch-like code
statements implemented using multiple 	 clauses.

DAO check-dao-auth

dao-executor::IMPL check-impl-auth

dao-multisig::SIGNER check-signer-auth

market-vault::INTERNAL check-impl-auth

market-vault::REFRESH refresh

vault::SYSTEM check-caller-auth

let

(define-private (position (account principal)) ;; enabled only
 (let ((mask (enabled-mask)))
 (contract-call? .market-vault position account mask)))

let

(define-private (position (account principal)) ;; enabled onLy
(contract-call? .market-vault position account (enabled-mask)))

(define-private (liquidation-context (account principal))
 (let ((pos (position-liq account))
 (mask (get mask pos))
 (alist (assets mask)))
 {
 position: pos,
 assets: alist
 }))

(define-private (liquidation-context (account principal))
 (let ((pos (position-liq account))
 {
 position: pos,
 assets: (assets (get mask pos)))
 }))

tuple {}

collateral: (list 64 (tuple (aid uint) (amount uint))),
debt	 : (list 64 (tuple (aid uint) (scaled uint)))

if-else

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

49

ClarityAlliance

From a formatting point of view, instead of 		 with continuous
indenting to the right:

They can be better formatted on each line, as such:

if-else

(if (is-eq type TYPE-PYTH)
 (resolve-pyth ident)
 (if (is-eq type TYPE-DIA)
 (resolve-dia ident)
 ERR-TYPE)))

(define-private (resolve-price (type (buff 1)) (ident (buff 32)))
 (if (is-eq type TYPE-PYTH) (resolve-pyth ident)
 (if (is-eq type TYPE-DIA) (resolve-dia ident)
 ERR-TYPE)))

Recommendation
Apply the mentioned style changes.

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

50

ClarityAlliance

[QA-07] Optimization for Enabling and
Disabling Assets

Description
In the		 contract, the current process for enabling or disabling
an asset involves:

•	 Retrieving registry data, including the 		 and 		
status booleans, using the 	 method.

•	 Calculating the updated bitmap to represent the new state.
•	 Confirming that the action is authorized by the DAO.
•	 Ensuring the asset’s current state is different from the intended

new state.
•	 Updating the bitmap accordingly.

However, retrieving registry data and computing additional fields is
unnecessarily complex and costly in terms of execution.

assets

collateral debt

status

Recommendation
Simplify the logic in		 by only checking if the current
bitmap differs from the new one.

Example implementation:

Apply the same optimization to		 .

assets::enable

(define-public (enable (asset principal) (collateral bool))
 (let ((id (get-reverse asset))
 (final-id	 (buff-to-uint-be id))
 (enabled-mask (get-bitmap))
- (a	 (status final-id enabled-mask))
- (c	 (get collateral a))
- (b (get debt a))
 (pos	 (mask-pos final-id collateral))
 (updated-bitmap (bit-or enabled-mask (pow u2 pos)))
 ;; --- dao auth ---
 (try! (DAO))

 ;; --- preconditions ---
 (asserts!
- (if collateral
-	 (not c) ;; collateral must not already be enabled
-	 (not b)) ;; debt must not already be enabled
+ (not (is-eq enabled-mask updated-bitmap))
	 ERR-ALREADY-ENABLED)

 ;; --- enable ---
 (var-set bitmap updated-bitmap)
 (ok true)
))

assets::disable

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

51

ClarityAlliance

[QA-08] Promote Debug Getters in eGroup
to Production

Description
The 	 contract includes getter functions labeled as debug: 	
			 , 		 , and 			 .
Facilitating the retrieval of on-chain data from an off-chain context will
aid third-party integrations and monitoring systems.

egroup

debug-get-popbucket debug-get-bucket debug-get-reverse

Recommendation
Rename all debug getter functions to remove the	 prefix and
consider them as a standard part of the contract. 		

debug-

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

52

ClarityAlliance

[QA-09] Simplify Nonce to a uint to Reduce
Complexity

Description
The 	 variable is currently stored as a 	 , necessitating
conversion operations each time it is accessed or incremented. The
optimization of 	 has surpassed the point of diminishing
returns in terms of added complexity.

Recommendation
Convert all instances of from 		 to 	 in the 	
contract, and from 	 to in the 		 contract.

After making these changes, remove the 		 and
		 conversions if they are no longer in use.

nonce (buff 4)

read_length

nonce (buff 4) uint assets

(buff 1) uint egroup

uint-to-buff4

uint-to-buff1

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

53

ClarityAlliance

[QA-10] Code Constants Usage Ambiguities

Description
The codebase contains several instances where constants are either
misplaced, unused, or inconsistently used.

Consider the following issues:

1.	 Unused Market Error Code

The following error codes in the	 are unused and should be
removed:

Additionally, the	 constant is defined in the		 contract
but is never referenced in the codebase. It should be removed.

2.	 Misplaced Constant Definition Positioning

The constants	 ,		 , and			 are used
throughout the		 contract but are defined in the	 section
of the file, midway through it.

 and	 should be defined in the
	 section of the		 .

3.	 Constant Name Case Mismatch

In the		 contract, the names of constants related to assets and
their zToken counterparts have inconsistent uppercase usage.

Example of naming:

Options:

1.	 Use uppercase for the asset name and keep the 	 prefix
lowercase, format: 	 ; e.g., 	 and 	 .

2.	 Alternatively, use constant names to mimic the token symbol; e.g., 	
	 and		 .

market

(define-constant ERR-EXCESSIVE- LIQUIDATION (err u400019))
(define-constant ERR-EXCESSIVE-COLLATERAL-SEIZURE (err 400020))
(define-constant ERR-SKIPPED-NO-BALANCE	 (err 4400021))

MAX-U64 assets

BPS PRECISION INDEX-PRECISION

market health

;;--
;; health
(define-constant BPS 	 u10000)
(define-constant PRECISION 100000000)
(define-constant INDEX-PRECISION 1000000000000) ;; 1e12 for index calculations

BPS PRECISION oracle constants and

errors market

market

(define-constant SBTC u1)
(define-constant zsBTC u6)

Z

z[NAME] SBTC zSBTC

zSBTCsBTC

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

54

ClarityAlliance

Recommendation
Implement the suggested changes for each situation.

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

55

ClarityAlliance

[QA-11] Simplification of Retrieving
Liquidation Position

Description
The 			 function is currently used to obtain
the collateral amounts (that are currently enabled) and all debt
amounts (both enabled and disabled) for an account that is to be
liquidated. The function is implemented as follows:

After obtaining the currently enabled mask, the function sets all debt
bits (leading 63-127 bits) to 1 and then calls
	 .		
	 	
This approach is redundant because the market-vault: :position
function inherently returns the full aggregated debt, regardless of
whether it is disabled:

market::position-liq

(define-private (position-liq (account principal)) ;; Liquidation specific
 (enabled collateral + all debt)
 (let ((enabled (enabled-mask))
 ;; Extract only collateral bits (0-63)
 (enabled-coll (bit-and enabled MAX-U64))
 ;; ALL debt bits set to 1 (64-127)
 (all-debt DEBT-MASK)
 ;; Combine: enabled collateral + all debt
 (liq-mask (bit-or enabled-coll all-debt)))
 (contract-call? market-vault position account liq-mask)))

market-vault::

position

(d
 (lookup-debt id mask MAX-U128))) ;; debt is always aggregated even if disabled

Recommendation
To streamline the 		 function, directly call
		 using the currently enabled market bitmap.
Additionally, consider renaming the 		 function to
something more descriptive, such as				 .

Example implementation:

position-liq market-

vault::position

position-liq

get-liquidation-position

(define-private (position-liq (account principal))
 (contract-call? .market-vault position account (enabled-mask)))

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

56

ClarityAlliance

[QA-12] Optimization of Borrower Scaled
Debt Retrieval

Description
In the 		 contract, both the 		 and 	 functions
retrieve the current scaled account debt through two separate calls to
the 				 function.

In the 		 function, it is done as follows:

In the 	 function, the retrieval process is more complex but
ultimately involves the same operations:

It is important to note that the 		 function is only
invoked from the 	 function and solely in this context.

The current implementation requires two calls to the same
		 contract, with a value being passed between these
calls. This redundancy introduces unnecessary overhead and can be
streamlined.

market liquidate repay

market-vault::debt-scaled

liquidate

(ob (contract-call? .market-vault resolve borrower))
(oid (get id ob))
(curr-scaled (contract-call? .market-vault debt-scaled oid debt-aid))

repay

(define-private (resolve (account principal)) ;; obligation
 (contract-call? .market-vault resolve account))

;; ...

(ob (resolve account))
(oid (get id ob))
;; ...
(scurr (contract-call? .market-vault debt-scaled oid aid))

market::resolve

repay

market-vault

Recommendation
Introduce a function in the 		 contract named
	 , which takes the borrower principal and the debt asset ID
as parameters and returns the scaled debt value.

Utilize this new function in both the 		 and 		
 functions. Additionally, eliminate the
function entirely, as it will no longer be necessary.

market-vault get-account-

scaled-debt

market::repay market::

liquidate market::resolve

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

57

ClarityAlliance

[QA-13] Improvements Needed for Mask
Market Contract Operations

Description
In the 		 contract, there are several operations that could be
enhanced both logically and in terms of execution fees:

1.	 Reuse the 	 function when selecting the smallest number:

2.	 Utilize standard Clarity bitwise operators for mask manipulation.

There are two instances of inlined bitwise operations that can be
simplified using bitwise operators:

•	 In	 :

This can be rewritten as:

•	 In			 :

This can be written as:

•	 In		 :

This can be rewritten as:

market

min

(dec (if (› sdelta scurr) scurr sdelta))

repay

(debt-bit-pos (+ aid u64))
(div (pow u2 debt-bit-pos))
(future-mask (- mask div))

future-mask (bit-and mask (bit-not (pow u2

(+asset-id DEBT-OFFSET))))

collateral-remove

(let ((coll-bit-pos aid)
 (div (pow u2 coll-bit-pos))
 (future-mask (- mask div)))

(let ((future-mask (bit-and position-mask

(bit-not(pow u2 asset-id)))))

borrow

(debt-bit-pos (+ aid u64))
(future-mask (let ((div (pow u2 debt-bit-pos))
		 (shiftr (/ mask div))
		 (bit (mod shiftr u2))
		 (base (if (is-eq bit u0) div u0)))
		 (+ mask base)))

(future-mask (bit-or mask (pow u2 (+ asset

-id DEBT-OFFSET))))

Recommendation
Implement the suggested changes.

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

58

ClarityAlliance

[QA-14] Function
Contains Inefficiency and Redundancies

Description

Recommendation
Implement the suggested optimizations in the
	 function.

Example implementation:

,

check-egroup-invariant

The implementation of				 suffers from deep
nesting of unoptimized condition checks and lacks early returns.
Examples include:

•	 The 	 and 		 variables are used only once and can
be inlined.

•	 The checks for 	 , 		 , and 	 can be
combined into a single 	 condition.

•	 Both 		 and 			 variables
include a 					 	 check. This
implies that if they are equal, the 			 variable
defaults to 	 , making the check redundant. This check can be
separated and moved to the beginning of the code block, alongside
other skip-this-iteration checks.

•	 Since both			 and				 variables
are used only once, they do not need to be declared. Their new
forms,					 for

 and					 for
 can be inclined.

check-egroup-invariant

valid exclude-id

valid

true

over max-id exclude ID

if

new-is-superset existing-is-superset

(not(is-eq existing-mask new-mask))

invariant-holds

new-is-superset existing-is-superset

(subset existing-mask new-mask) new-is-subset

(subset new-mask existing-mask) existing-is-superset

egroup::check-egroup-

invariant

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

59

ClarityAlliance

(define-private (check-egroup-invariant
 (id uint)
 (acc { new-mask: uint,
 new-Itv-borrow: uint,
 new-ltv-liq-partial: uint,
 new-ltv-liq-full: uint,
 exclude-id: (optional uint),
 max-id: uint,
 valid: bool }))

;; Sanity check
(if (or (not (get valid acc))
 (>= id (get max-id acc))
	 (is-eq (some id) (get exclude-id acc)))
 acc
 ;; Check invariant
 (let ((existing (lookup id))
 (existing-mask (get MASK existing))
 (new-mask (get new-mask acc)))c

 ;; Skip if equal
 (if (is-eq existing-mask new-mask)
 асс
 (let ((existing-ltv-borrow (buff-to-uint-be
 (get LTV-BORROW existing)))
 (existing-ltv-liq-partial (buff-to-uint-be
 (get LTV-LIQ-PARTIAL existing)))
 (existing-ltv-liq-full (buff-to-uint-be
 (get LTV-LIQ-FULL existing)))
 (new-ltv-borrow (get new-ltv-borrow acc))
 (new-Itv-liq-partial (get new-ltv-liq-partial acc))
 (new-ltv-liq-full (get new-ltv-liq-full acc))
 ;; Determine relationship
 (holds
 (if (subset existing-mask new-mask)
 ;; New is a proper superset / LTVn ‹= LTVe
 (and (<= new-ltv-borrow existing-ltv-borrow)
 (<= new-ltv-liq-partial existing-ltv-liq-partial)
 (<= new-ltv-liq-full existing-ltv-liq-full))
 (if (subset new-mask existing-mask)
 ;; Existing is a proper superset / LTVn >= LTVe
 (and (>= existing-ltv-borrow new-ltv-borrow)

 (>= existing-ltv-liq-partial new-ltv-liq-partial)
 (>= existing-ltv-liq-full new-ltv-liq-full))
 ;; No subset relationship
 true))))

 (merge acc { valid: holds }))))))

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

60

ClarityAlliance

[QA-15] Redundant Parameter Fragment

Description

Recommendation
Remove the 	 parameter and any related comments from both
		 and 			 .

The function 			 accepts as a parameter, which it
subsequently passes to 		 with the following
comment explaining its purpose:

However, 		 does not make use of 	 , rendering it
redundant.

aid

price-resolve aid

resolve-callcode

;; aid is passed so resolve-token can fetch cached lindex
 (final-price (try! (resolve-callcode p callcode aid)))

resolve-callcode aid

(define-private (resolve-callcode (p uint) (calicode (optional (buff 1)))
 (aid uint))
 (let ((cc (unwrap! callcode (ok p))))
 (if (is-eq cc CALLCODE-STSTX)
 (resolve-ststx p)
 (if (is-eq cc CALLCODE-ZSTX)
 (resolve-ztoken p STX)
 (if (is-eq cc CALLCODE-ZSTSTX)
 (resolve-ztoken p STSTX)
 (if (is-eq cc CALLCODE-ZUSDC)
 (resolve-ztoken p USDC)
 (if (is-eq cc CALLCODE-ZUSDH)
 (resolve-ztoken p USDH)
 ERR-ORACLE-CALLCODE))))))))

price-resolve resolve-callcode

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

61

ClarityAlliance

[QA-16] Enhance Market Contract External
Interface

Description
The	 contract is designed for use by third-party integrators,
providing entry points for borrowing, repaying, collateral management, and
liquidations.

At present, all public-facing entry points only return		 , which offers
no meaningful information to integrators.

Recommendation
To enhance third-party external integration, implement the following
changes:

1. In the		 function, return the			 , which
represents the actual amount repaid.
2. In the			 function (and the subsequent
), return a tuple containing the debt repaid and the
collateral collected. These values can vary significanctly during the
function’s execution.

market

(ok true)

market::repay amount-to-repay

market::liquidate

liquidate-multi

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

62

ClarityAlliance

[QA-17] Create Market Trait

Description
The	 contract is designed for use by third-party integrators. It
provides entry points for borrowing, repaying, collateral management, and
liquidations.

At present, there is no official trait available for third-party integrators to use.

Recommendation
Develop a market trait for use by external integrators.

market

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

63

ClarityAlliance

[QA-18] Implement a Majority Rule-Based
Multisig

Description
In the current design of the DAO multisig contract, signer approvals are
necessary for proposals that alter the signer set, whether it involves adding
a new signer, removing an existing one, or updating the signer approval
threshold.

The threshold is a numerical value, and approval requires reaching this
specified count.

This approved count threshold model can lead to certain vulnerabilities.
For instance, if just one multisig voter is compromised, the entire protocol
could be at risk.

For example, if a signer is compromised, one of the following actions must
be taken to mitigate the issue:

•	 Remove the compromised signer, provided the remaining signers still
meet the approval threshold.

•	 Add a new signer to replace the compromised one.
•	 Lower the approval threshold so that the compromised signer’s approval

is no longer necessary.

However, if the approval threshold equals the total number of signers, the
proposal system can become deadlocked.

A compromised signer could refuse to approve any proposals, including
those necessary to remove themselves from the signer set. This behavior
would prevent all proposals from being executed.

In contrast, if the threshold is set as a percentage, such as a hardcoded
66%, the majority will decide regardless of the number of voters.
Additionally, the threshold could apply the 50%+1 rule instead of a higher
percentage.

Recommendation
Implement a majority rule-based multisig system for enhanced security.

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

64

ClarityAlliance

[QA-19] Integrate Max Staleness into Asset
Oracle Data Entry

Description
Currently, the oracle staleness configuration is managed through a global
			 data variable and a separate
map for per-feed overrides. This setup introduces unnecessary complexity
and requires manual synchronization between asset registration and
staleness configuration. Whenever an asset is added, its staleness must
be configured separately in a different map using			 . .

Recommendation
Incorporate			 as a field within the asset’s oracle data
structure in the asset registry.

Subsequently, remove the default staleness logic from the		 and
utilize the data from the asset oracle entry.

default-max-staleness

set-feed-max-staleness

max-staleness

market

feed-max-staleness

oracle: 1
 type: (buff 1),
 ident: (buff 32),
 callcode: (optional (buff 1)),
 max-staleness: uint
}

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

65

ClarityAlliance

[QA-20] Remove Unused Market Contract Code
Artifacts

Description
In the		 contract, there are opportunities for minor improvements
to enhance code readability and optimize operations:

1. Redundant Map Definition

The			 map is defined but never utilized within the
codebase. This results in unnecessary storage overhead and code clutter
without adding any functionality.

It is recommended to remove the unused			 map
definition.

2. Unused Constants Post-Deployment

There are several unused constants that are remnants from development.
These will be removed after the production update, but they are noted
here for reference:

•	 		 constant
•	 			 constant
•	 		 constant

3. Additional Unused Constants

•	
•	 		 (replaced by)

4. Irrelevant Comments
Remove the following irrelevant comments:

•	 L305
•	 L338
•	 L343

Recommendation
Remove the specified code artifacts.

market

ztoken-asset-ids

ztoken-asset-ids

PYTH-STORAGE

STSTX-RESERVE

PRECISION INDEX-PRECISION

STSTX-DATA-CORE

ERR-NO-VALID-EGROUP

(define-map ztoken-asset-ids uint bool)

https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/market/market.clar#L305
https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/market/market.clar#L338
https://github.com/Zest-Protocol/zest-core/blob/eb99c6f8acf89b6d86ede97173179a8a8b1e25c8/contracts/market/market.clar#L343

Security Review

Zest Protocol
v2 Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] stSTX Vault Cannot Withdraw Tokens
8.2. High Findings

[H-01] Efficiency Groups Cannot Be Updated
[H-02] DAO Implementation Cannot Be Updated
[H-03] Disabled Debt Not Accounted For In Notional
Debt
[H-04] Self-Liquidation Market Draining Attack via
Egroup LTV Downgrading

8.3. Medium Findings
[M-01] Positions With An Empty Safe Mask Are Not
Fully Supported
[M-02] Missing Grace Period After Vault Repayment
Pause
[M-03] Lack of Slippage on Liquidations
[M-04] Ambiguous EGroup Defaulting Logic
[M-05] Dangerous Market Account Behavior
[M-06] Inability to Liquidate Positions Using zToken
Collateral Within the Same Vault FlashLoan Context
[M-07] Repay Health Check May Block Insolvent
Users From Avoiding a Full Liquidation

8.4. Low Findings
[L-01] Threshold Changes Can Invalidate Pending
Executable Proposals
[L-02] Vault Names, Symbols, and URI Require
Sanitization
[L-03] Market Vault Funds Retrieval Bypasses Clarity
4 Security Enhancements
[L-04] Reducing Collateral Liquidation LTV Ratios
May Instantly Liquidate Users
[L-05] Significant Absence of Emitted Events
[L-06] Maximum Liquidation Penalty Is Not Capped
[L-07] Avoid Using Unwrap Panic

8.5. QA Findings
[QA-01] Inline Reserve Calculator Contract
[QA-02] Missing Flash Loan Features
[QA-03] Optimization of Market Asset Retrieval
[QA-04] Eliminate Redundant Contract Caller
Authentication in Vault DAO Operations
[QA-05] Function Naming Ambiguities Severely
Decrease Code Readability
[QA-06] General Code Style Improvements
[QA-07] Optimization for Enabling and Disabling
Assets
[QA-08] Promote Debug Getters in eGroup to
Production
[QA-09] Simplify Nonce to a uint to Reduce
Complexity
[QA-10] Code Constants Usage Ambiguities
[QA-11] Simplification of Retrieving Liquidation
Position
[QA-12] Optimization of Borrower Scaled Debt
Retrieval
[QA-13] Improvements Needed for Mask Market
Contract Operations
[QA-14] Function check-egroup-invariant Contains
Inefficiency and Redundancies
[QA-15] Redundant Parameter Fragment
[QA-16] Enhance Market Contract External Interface
[QA-17] Create Market Trait
[QA-18] Implement a Majority Rule-Based Multisig
[QA-19] Integrate Max Staleness into Asset Oracle
Data Entry
[QA-20] Remove Unused Market Contract Code
Artifacts
[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

2
3
4
4
5
5
5
5
6
7
8
10
10
12
12
13
14

15

17
17

18

19
20
23
30

31

33
33

34

35

38

39
40
41
42
42
43
44
45

46

47
50

51

52

53
55

56

57

58

60
61
62
63
64

65

66

66

ClarityAlliance

[QA-21] Isolate stSTX Price Resolution from
resolve-ztoken

Description
The		 function is invoked within		 for
each price resolution operation. This introduces computational overhead
for non-stSTX assets, as the conditional check is evaluated with every call,
even when it is not necessary.

Recommendation
Shift the stSTX price resolution logic to the caller level. This allows for
direct price resolution for most assets and ensures that the stSTX-specific
logic is only executed when required.

resolve-ztokenresolve-ststx

(final-price (if (is-eq aid STSTX)
 (try! (resolve-ststx p))
 p))

@@ -360,19 +360,14 @@
 (let ((ratio (unwrap! (call-ststx-ratio) ERR-ORACLE-CALLCODE)))
 (ok (mul-div-down p ratio STSTX-RATIO-DECIMALS))))

-;; ztoken transformation - OPTIMIZATION: Uses cached liquidity index
 (define-private (resolve-ztoken (p uint) (aid uint))
- (let ((final-price (if (is-eq aid STSTX)
-		 (try! (resolve-ststx p))
-		 p))
-	 ;; CRITICAL: Fetch lindex from cache instead of cross-contract call
-	 (cached (unwrap! (get-cached-indexes aid) ERR-ORACLE-CALLCODE))
+ (let ((cached (unwrap! (get-cached-indexes aid) ERR-ORACLE-CALLCODE))
 (cached-lindex (get lindex cached))
- (scaled (* final-price cached-lindex)))
+ (scaled (* p cached-lindex)))
 (ok (div-down scaled INDEX-PRECISION))))

 ;; callcode dispatcher
-(define-private (resolve-callcode (p uint) (callcode (optional (buff 1)))
- (aid uint))
+(define-private (resolve-callcode (p uint) (callcode (optional (buff 1))))
 (let ((cc (unwrap! callcode (ok p))))
 (if (is-eq cc CALLCODE-STSTX)
 (resolve-ststx p)
@@ -381,7 +376,7 @@
	 (if (is-eq cc CALLCODE-ZSBTC)
		 (resolve-ztoken p SBTC)
		 (if (is-eq cc CALLCODE-ZSTSTX)
- 	 (resolve-ztoken p STSTX)
+ 	 (resolve-ztoken (try! (resolve-ststx p)) STSTX)
 		 (if (is-eq cc CALLCODE-ZUSDC)
 	 (resolve-ztoken p USDC)
		 (if (is-eq cc CALLCODE-ZUSDH)

