
ZEST PROTOCOL v2 (Upgrade V2) SECURITY REVIEW

Conducted by:
KRISTIAN APOSTOLOV, ALIN BARBATEI (ABA), SILVEROLOGIST

DECEMBER 20TH, 2025

Contents
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Critical Findings
[C-01] Positions With ZTokens Cannot Be Liquidated If
Not Already Cached

8.2. Medium Findings
[M-01] DAO Treasury Cannot Transfer wSTX or stSTX
[M-02] wSTX Wrapper Issues
[M-03] Pyth Price Updates Cannot Be Bundled in a
Single Stacks Transaction
[M-04] Egroups Non-Mask Configurations Can't Be
Easily Changed
[M-05] Positions With No Debt May Be Forced To
Leave Dust Collateral
[M-06] Users Can Enter a Market Position Without an
Egroup
[M-07] Full Vault Asset Debt Socialization Bricks Vault
Indefinitely

8.3. Low Findings
[L-01] Flash Loan Fee Disregards Deposit Cap
[L-02] Vaults Use tx-sender for Authorization
[L-03] Add Extra Protection Against Self-Liquidations

1

3

4

4

5

5

6

6

6

7

8

11

11

11

13

13

14

17

19

20

21

23

24

24

26

27

[L-04] Use Intentional Unwrap Logic on Asset Retrieval
Path
[L-05] Previews Incorrectly Overprice Vault Shares

8.4. QA Findings
[QA-01] Add Ability to Disable Borrowing Specific
Assets Per EGroup
[QA-02] Ambiguous redeem Panic Revert in Vault

2

29

30

32

32

34

1. About Clarity Alliance
Clarity	Alliance is a team of expert whitehat hackers specialising in securing
protocols on Stacks.

They have disclosed vulnerabilities that have saved millions in live TVL and
conducted thorough reviews for some of the largest projects across the Stacks
ecosystem.

Learn more about Clarity Alliance at clarityalliance.org.

3

https://clarityalliance.org/

2. Disclaimer
This report is not, and should not be considered, an endorsement or
disapproval of any project, team, product, or asset, nor does it reflect on their
economics, value, business model, or legal compliance. It does not provide any
warranty regarding the absolute bug-free nature or functionality of the
analyzed technology.

Nothing in this report should be used to make investment or participation
decisions. It does not constitute investment advice. Instead, it reflects an
extensive assessment process intended to help clients improve code quality
and reduce the inherent risks associated with cryptographic tokens and
blockchain systems.

Blockchain technology presents ongoing and significant risk, and each
company or individual remains responsible for their own due diligence and
security posture. Clarity Alliance aims to reduce attack vectors and
technological uncertainty but does not guarantee the security or performance
of any system we review.

All assessment services are subject to dependencies and active development.
Your access to and use of any services, reports, or materials is at your sole risk
on an as-is and as-available basis.

Cryptographic tokens are emergent technologies with high technical
uncertainty, and assessment results may include false positives, false negatives,
or other unpredictable outcomes. Smart contracts may depend on multiple
external parties, remain vulnerable to internal or external exploitation, and
may carry elevated risks if owner privileges remain active. Accordingly, Clarity
Alliance does not guarantee the explicit security of any audited smart contract,
regardless of the reported verdict.

3. Introduction
A time-boxed security review of Zest protocol, where Clarity Alliance reviewed
the scope and provided insights on improving the protocol.

4

4. About Zest Protocol
Zest Protocol is the DeFi protocol built for Bitcoin. Fully on-chain and open-
source, it is building the future of Bitcoin inance.

We've launched Zest Protocol Borrow, enabling users to unlock liquidity by
borrowing against their assets.

Live on Stacks - the leading Bitcoin Layer - Zest is now the top DeFi protocol
on the network. Through the Stacks Market, users can deposit idle assets such
as STX, sBTC, stSTX, USDC, and others to earn yield, accumulate points, and
access overcollateralized loans..

Zest exists to make Bitcoin productive - every sat of it. The goal is to build a
vibrant borrowing and lending ecosystem around Bitcoin as an asset.

5. Risk Classification

Severity
Impact:
High

Impact:
Medium

Impact:
Low

Likelihood: High Critical High Medium

Likelihood:
Medium High Medium Low

Likelihood: Low Medium Low Low

5

5.1. Impact

High - leads to a significant material loss of assets in the protocol or
significantly harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value)
or a core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the
protocol's functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-
chain conditions, and the cost of the attack is relatively low compared to the
amount of funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant
stake by the attacker with little or no incentive.

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6

6. Security Assessment Summary

Scope
The following contracts, located in the zest-core repository, were in scope
of the security review:

dao\dao-multisig.clar

dao\dao-executor.clar

dao\dao-treasury.clar

dao\traits.clar

market\market.clar

market\market-vault.clar

registry\egroup.clar

registry\assets.clar

registry\reserve-calculator.clar

vault\vault-stx.clar

vault\vault-sbtc.clar

vault\vault-ststx.clar

vault\vault-usdc.clar

vault\vault-usdh.clar

vault\traits.clar

Initial Commit Reviewed

fab7cdf569b4165b2c0bd47fd7ff46717d5e8b43

Final Commit After Remediations

3e5c24c187d5212e72a4a89ab960cb2f5a5a2608

7

https://github.com/Zest-Protocol/zest-core/commit/fab7cdf569b4165b2c0bd47fd7ff46717d5e8b43
https://github.com/Zest-Protocol/zest-core/commit/3e5c24c187d5212e72a4a89ab960cb2f5a5a2608
https://github.com/Zest-Protocol/zest-core/

7. Executive Summary
Over the course of the security review, Kristian Apostolov, Alin Barbatei (ABA),
Silverologist engaged with - to review Zest Protocol. In this period of time a
total of 15 issues were uncovered.

Protocol Summary

Protocol Name Zest Protocol

Date December 20th, 2025

Findings Count

Severity Amount

Critical 1

Medium 7

Low 5

QA 2

Total Findings 15

8

Summary of Findings

ID Title Severity Status

[C-01] Positions With ZTokens Cannot Be
Liquidated If Not Already Cached Critical Resolved

[M-01] DAO Treasury Cannot Transfer
wSTX or stSTX Medium Resolved

[M-02] wSTX Wrapper Issues Medium Resolved

[M-03]
Pyth Price Updates Cannot Be
Bundled in a Single Stacks
Transaction

Medium Resolved

[M-04]
Egroups Non-Mask
Configurations Can't Be Easily
Changed

Medium Resolved

[M-05] Positions With No Debt May Be
Forced To Leave Dust Collateral Medium Resolved

[M-06] Users Can Enter a Market Position
Without an Egroup Medium Resolved

[M-07] Full Vault Asset Debt Socialization
Bricks Vault Indefinitely Medium Acknowledged

[L-01] Flash Loan Fee Disregards
Deposit Cap Low Resolved

[L-02] Vaults Use tx-sender for
Authorization Low Resolved

[L-03] Add Extra Protection Against Self-
Liquidations Low Resolved

[L-04] Use Intentional Unwrap Logic on
Asset Retrieval Path Low Resolved

9

[L-05] Previews Incorrectly Overprice
Vault Shares Low Resolved

[QA-01] Add Ability to Disable Borrowing
Specific Assets Per EGroup QA Resolved

[QA-02] Ambiguous redeem Panic Revert
in Vault QA Resolved

10

8. Findings

8.1. Critical Findings

[C-01] Positions With ZTokens Cannot Be
Liquidated If Not Already Cached

Location:

market.clar#L488-L493
market.clar#L1430

Description
Liquidations of positions that include zTokens fail if no caching has
occurred within the same block.

This happens because the market::liquidate function first calls get-
liquidation-context :

(context (try! (get-liquidation-context borrower)))

and only afterwards performs the caching:

;; accrue
(u-debt (accrue-user-debts (get debt pos-full)))
(u-coll (accrue-user-collateral (get collateral pos-full)))

Inside get-liquidation-context , the get-assets function is invoked:

(define-private (get-liquidation-context (account principal))
 (let ((position (try! (get-liquidation-position account))))
 (ok {
 position: position,
 assets: (get-assets (get mask position))
 })))

11

https://github.com/Zest-Protocol/zest-core/blob/35db78158b49a8c3811a457d29d1d8b0805e05c2/contracts/market/market.clar#L488-L493
https://github.com/Zest-Protocol/zest-core/blob/35db78158b49a8c3811a457d29d1d8b0805e05c2/contracts/market/market.clar#L1430

get-assets ultimately attempts to fetch asset prices. If any of these assets
are zTokens, it calls resolve-ztoken , which fails with ERR-ORACLE-CALLCODE
when no cache entry exists:

(define-private (resolve-ztoken (p uint) (aid uint))
 (let ((cached (unwrap! (get-cached-indexes aid) ERR-ORACLE-CALLCODE))

As a result, any user position that uses zTokens as collateral will cause the
liquidation to revert if the zTokens have not already been cached by
another market operation in the same block.

Recommendation
Split the get-liquidation-context function into two parts. The position
lookup should occur before accrual (and before it is used), while the get-
assets call should be moved to execute after accrual.

12

8.2. Medium Findings

[M-01] DAO Treasury Cannot Transfer
wSTX or stSTX

Location:

dao-treasury.clar#L33

Description
The current implementation of the dao-treasury contract does not allow
tokens that rely on tx-sender for authorization (e.g., wrapped STX or
stSTX) to be transferred out of it, because it does not use as-contract
transfer logic:

(try! (contract-call? token transfer amount current-contract recipient none))

At present, all observed protocol operations transfer only LP tokens to the
treasury as fees. However, if fees are ever sent in the underlying asset
format, transfers of tokens that depend on tx-sender authorization will
revert.

Recommendation

Implement an as-contract? transfer from the dao-treasury , checking for
the underlying asset for wSTX and then applying the appropriate approval
limits.

13

https://github.com/Zest-Protocol/zest-core/blob/main/contracts/dao/dao-treasury.clar#L33

[M-02] wSTX Wrapper Issues
Location:

wstx.clar

Description
The current wSTX wrapper contract contains a functional issue and
several redundant operations that should be removed.

Issue: wSTX is not SIP-10 compliant

SIP-10 requires that the transfer function emit a memo if one is provided.
However, the current implementation ignores the memo parameter entirely
and does not emit it.

(define-public (transfer (amount uint) (sender principal)
 (recipient principal) (memo (optional (buff 34))))
 (begin
 (asserts! (or (is-eq tx-sender sender)
 (is-eq contract-caller sender)) err-not-token-owner)
 (stx-transfer? amount sender recipient)
)
)

Redundant or improvable operations:

1. The comparison (asserts! (or (is-eq tx-sender sender) (is-eq contract-

caller sender)) err-not-token-owner) is redundant, because the stx-
transfer? call can only succeed if the sender is the tx-sender :

sender must be current tx-sender.

This also implicitly returns the correct error value:

(err u4) sender not tx-sender.

The contract-caller check is unnecessary, since even if it passes, stx-
transfer? will still fail if sender is not exactly tx-sender .

The err-not-token-owner error can therefore be removed as well.

14

https://github.com/Zest-Protocol/zest-core/blob/22a416022ec2ff00b72b4424437c3299ea821acd/contracts/utility/token/wstx.clar
https://github.com/stacksgov/sips/blob/main/sips/sip-010/sip-010-fungible-token-standard.md#transfer
https://docs.stacks.co/reference/clarity/functions#stx-transfer

1. Leftover, unused code artifacts

The following code is unused and can be removed:

(define-constant err-unauthorised (err u3000))
(define-fungible-token wstx)

(define-public (mint (amount uint) (recipient principal))
 (err u1)
)

(define-public (burn (amount uint) (owner principal))
 (err u1)
)

Note that the currently used Zest v1 on-chain wSTX version has the same
issues, but does not include the burn function.

1. All data-vars can be constants

Since none of the data variables are ever modified, they should be defined
as constants to reduce integration complexity and costs for third parties:

(define-data-var token-name (string-ascii 32) "wSTX")
(define-data-var token-symbol (string-ascii 10) "wSTX")
(define-data-var token-uri (optional (string-utf8 256)) none)
(define-data-var token-decimals uint u6)

1. Use a more descriptive token name

The token name is currently wSTX , identical to the symbol. In most
ecosystems, wrapper tokens follow the "Wrapped <token-symbol>" naming
convention, which is clearer for users and integrators.

Recommendation

Update the transfer function to correctly handle and emit the memo .

Example implementations:

15

https://explorer.hiro.so/txid/SP2VCQJGH7PHP2DJK7Z0V48AGBHQAW3R3ZW1QF4N.wstx?chain=mainnet&tab=sourceCode

(define-public (transfer (amount uint) (sender principal)
 (recipient principal) (memo (optional (buff 34))))
 (begin
 (try! (stx-transfer? amount sender recipient))
 (match memo to-print (print to-print) 0x)
 (ok true)
)
)

or

(define-public (transfer2 (amount uint) (sender principal)
 (recipient principal) (memo (optional (buff 34))))
 (match memo
 to-print (stx-transfer-memo? amount sender recipient to-print)
 (stx-transfer? amount sender recipient)
)
)

Apply the remaining changes by removing unused code, converting data
variables to constants, and renaming the token to "Wrapped STX" .

16

[M-03] Pyth Price Updates Cannot Be
Bundled in a Single Stacks Transaction

Location:

market.clar
market-trait.clar

Description
With the latest changes, the market contract always treats the contract-
caller as the primary participant account in all entry points. While this
design is safer, it complicates integration for third-party tools that only
intend to wrap logic.

The contract-caller security improvement was introduced specifically to
prevent wrapping logic, which can be abused.

Previously, one such wrapping pattern was used to update Pyth price
feeds, which users are expected to do. Under the current design, users or
any third party must call the Pyth write feed updates in separate
transactions.

This is undesirable given the project’s stated business intent.

Recommendation

There are two possible approaches to resolve this issue:

1. Change the entry point logic from using contract-caller to tx-sender .
This would be a security downgrade and would again allow wrapper
contracts that update Pyth before calling the main entry points.

2. A more security-oriented solution is to add an optional list of feeds to
each relevant entry point and, when provided, attempt to update Pyth
with them.

Note: in the current system, only three feeds (STX, sBTC, and USDC) need
to be updated via Pyth. However, this may change in the future, so the

17

https://github.com/Zest-Protocol/zest-core/blob/22a416022ec2ff00b72b4424437c3299ea821acd/contracts/market/market.clar
https://github.com/Zest-Protocol/zest-core/blob/22a416022ec2ff00b72b4424437c3299ea821acd/contracts/market/market-trait.clar

recommendation is to support a list with a capacity greater than three.
Otherwise, third-party integrators would need to modify the <market-
trait> at that point.

Example implementation:

(define-private (write-feed (feed (buff 8192)) (status (response bool uint)))
 (match status
 success-status
 (match
 (contract-call? 'SP1CGXWEAMG6P6FT04W66NVGJ7PQWMDAC19R7PJ0Y.pyth-oracle-v4 verify-and-u
 feed
 {
 pyth-storage-contract: .pyth-storage-v4,

 pyth-decoder-contract: 'SP1CGXWEAMG6P6FT04W66NVGJ7PQWMDAC19R7PJ0Y.pyt

 wormhole-core-contract: 'SP1CGXWEAMG6P6FT04W66NVGJ7PQWMDAC19R7PJ0Y.wo
 }
)
 update-success (ok true)
 update-failed ERR-PRICE-FEED-UPDATE-FAILED)
 error-status status
)
)

(define-private (write-feeds (feeds (optional (list 3 (buff 8192)))))
 (match feeds
 entries (fold write-feed entries (ok true))
 (ok true)))

and call it as (feeds-check (try! (write-feeds price-feeds))) .

18

[M-04] Egroups Non-Mask
Configurations Can't Be Easily Changed

Location:

egroup.clar#L449

Description
The current implementation allows changing egroup configuration via
egroup::update .

However, this function rejects any update that does not modify the mask:

(asserts! (not (is-eq prev-MASK new-MASK)) (ok true))

As a result, if the team needs to change an LTV group, they must first
change the mask to some different, arbitrary mask, and then change it
back to the original mask along with the LTV modification for the update
to be accepted.

Recommendation

Remove the (asserts! (not (is-eq prev-MASK new-MASK)) (ok true)) check
altogether.

19

https://github.com/Zest-Protocol/zest-core/blob/bd10991439070f6693daf9e9facbb739053800cd/contracts/registry/egroup.clar#L449

[M-05] Positions With No Debt May Be
Forced To Leave Dust Collateral

Location:

market.clar#L1141-L1166

Description When a user removes collateral from the market via
collateral-remove , their existing overall collateral value is rounded down:

;; LTV (enabled collaterals only)
(notional-valued-assets
 (get-notional-evaluation { position: position, assets: assets }))
(collateral-value (get collateral notional-valued-assets))

but the collateral to be removed is evaluated by rounding up:

(removed-asset-value
 (find-and-resolve-asset-value assets asset-id amount true)))

This is done to ensure no value leakage occurs against the protocol when
removing assets.

However, an edge case arises where users with no debt are still subjected
to a health check. For users attempting to withdraw their full collateral,
this check may revert due to the rounding behavior described above.

This effectively forces users to leave dust as collateral in the market vault.

Recommendation

In the market::collateral-remove function, perform health checks only if the
user has debt.

20

https://github.com/Zest-Protocol/zest-core/blob/bd10991439070f6693daf9e9facbb739053800cd/contracts/market/market.clar#L1141-L1166

[M-06] Users Can Enter a Market Position
Without an Egroup

Location:

market.clar#L1068

Description
A key system invariant is that all users in the system must have their
positions associated with an egroup.

The team is responsible for ensuring that every combination of actions
that allows users to enter the system is backed by a corresponding egroup.
In other words, if a user has added collateral, they may be allowed to
borrow or remove collateral, but only if there is an egroup that supports
that position.

Egroups should be broadly configured so that any permutation and
variation of a user’s position is covered by an egroup. In the unlikely case
where, for example, the protocol supports 3 assets but there is no egroup
that covers one of them, entry into the system with that unsupported
configuration should be blocked.

The current implementation of market::collateral-add incorrectly skips the
egroup check when the user is new, the collateral is new, and there is no
associated debt.

This leads to the following problematic scenario:

The team adds 2 assets as collateral.
By mistake, they only add an egroup that supports 1 of those collateral
assets.
A user can add the first, supported asset, and then add the second,
unsupported asset. Because the user has no debt, the (future-group (try!
(get-egroup future-mask))) check is never reached:

21

https://github.com/Zest-Protocol/zest-core/blob/main/contracts/market/market.clar#L1068

;; ONLY check capacity if user has debt
(if (> current-debt-usd u0)
 ;; Calculate future mask and validate egroup exists
 (let ((current-coll-usd (get collateral current-notional))
 (current-capacity (* current-coll-usd current-ltv))
 (added-collateral-value (try! (get-asset-value asset amount false)))
 (future-group (try! (get-egroup future-mask)))

As a result, the position is allowed to be created.

From that point on, any protocol interaction will fail for the user because
retrieving their egroup (an action performed on all entry points) will
always revert with ERR-NO-EGROUP-FOUND . The user’s funds will remain
locked in the system until a new egroup is added that supports the user’s
position.

Recommendation
Move the (future-group (try! (get-egroup future-mask))) call from inside
the (if (> current-debt-usd u0) branch to immediately after the (future-
mask (bit-or current-mask (pow u2 asset-id))) declaration.

This will ensure that users cannot enter a position without an associated
egroup.

22

[M-07] Full Vault Asset Debt Socialization
Bricks Vault Indefinitely

Location:

vault-sbtc.clar#L931

Description When socializing bad debt, vaults cap all value subtractions
to the maximum value in the system, effectively capping each update at
resetting the value back to zero.

;; socialize-debt
 (var-set principal-scaled (if (> scaled-principal scaled-amount)
 (- scaled-principal scaled-amount) u0))
 (var-set total-borrowed (if (> borrowed debt-reduction)
 (- borrowed debt-reduction) u0))
 (var-set assets (if (> current-assets debt-reduction)
 (- current-assets debt-reduction) u0))

This issue arises because assets can be set to zero when bad debt exceeds
the protocol’s reserves. Beyond completely wiping the share value of vault
holders, this also bricks the vault’s functionality due to a division-by-zero
in convert-to-shares-preview :

(if (is-eq ts u0)
 amount
 (mul-div-down amount ts ta))))

Recommendation

Because this situation requires a catastrophic black swan event whose
market impact would be far more detrimental to the protocol overall, the
most practical approach is to acknowledge the bricking side effect on a
fully insolvent vault and redeploy afterwards.

Additionally, convert-to-shares-preview and convert-to-assets-preview
should be augmented with guard clauses on the denominator, so they
return an error instead of causing a division-by-zero panic at runtime.

23

https://github.com/Zest-Protocol/zest-core/blob/0e81d76c755fde72134963ccc0d05bf0cef758bf/contracts/vault/vault-sbtc.clar#L931

8.3. Low Findings

[L-01] Flash Loan Fee Disregards Deposit
Cap

Location:

vault-sbtc.clar#L991-L998

Description When a flash loan fee is paid by users, it is converted into LP
tokens and transferred to the treasury.

;; Only mint treasury shares and add fee if fee > 0
(if (> fee u0)
 (let ((treasury-shares (convert-to-shares-preview fee)))
 (if (> treasury-shares u0)
 (try! (ft-mint? zft treasury-shares .dao-treasury))
 false)
 (var-set assets (+ (var-get assets) fee)))
 false)

This effectively behaves as a deposit, increasing the underlying assets
while also minting shares.

Note that if the minting had not been performed, this would have been
interpreted as a donation.

This behavior directly contrasts with the cap that is enforced on user
deposits.

(define-public (deposit (amount uint) (min-out uint) (recipient principal))
 (let (
 ;; ... code ...
 (CAP-SUPPLY (var-get cap-supply))
 (current-assets (var-get assets))
 ;; ... code ...
 (asserts! (<= (+ current-assets amount) CAP-SUPPLY) ERR-SUPPLY-CAP-EXCEEDED)

Recommendation

24

https://github.com/Zest-Protocol/zest-core/blob/main/contracts/vault/vault-sbtc.clar#L991-L998

Transfer the fee amount directly to the treasury without converting it to
LP tokens and without accounting for it in the vault. Apply this change to
all vaults.

25

[L-02] Vaults Use tx-sender for
Authorization

Location:

GLOBAL

Description
All vault implementations use (account tx-sender) in both the deposit and
redeem functions.

This allows integrators to call deposit or redeem on behalf of the tx-sender .
However, this behavior can be abused by malicious parties if a user is ever
phished into signing a transaction that effectively empties all of their
vaults.

Recommendation

Modify the vault::deposit and vault::redeem functions to use contract-
caller as the account.
This will also require changes to the vault::initialize function, since all
deposits must now be made in a context where contract-caller equals tx-
sender ; otherwise, the call will revert.

Currently, the initialize function is DAO-gated, and DAO gating requires
tx-sender to be the dao-executor , while contract-caller will always be the
proposal contract.

To address this, remove the DAO authorization check. There is no incentive
for a third party to call initialize , since the initial deposit amount is
locked to the null address regardless of the caller’s intent.

26

https://global/

[L-03] Add Extra Protection Against Self-
Liquidations

Location:

market.clar

Description
A well-known vulnerability in borrowing and lending protocols relates to
self-liquidations triggered during market price updates.

An attack exploiting this would unfold as follows:

The attacker monitors for an oracle price update transaction that will
reduce the price of the collateral.
The attacker then sandwiches the oracle price update transaction:

Front-runs it by adding collateral and borrowing against it.
Back-runs it by self-liquidating.
Finally, removes the remaining collateral.

Note that this attack is only viable if debt socialization exists.

The attack is profitable only if the attacker can recover the entire collateral
plus an additional amount derived from the liquidation penalty. Flash
loans are typically used to amplify profits. For systems relying on oracles
like Pyth, as in the case of Zest, the attack is more feasible because anyone
can update the price within a valid range of potential prices during a given
time window (1 minute by default on the Pyth network).

This type of attack is also known as oracle frontrunning.

To mitigate this attack, Zest has already implemented differential loan-to-
value (LTV) ratios. When a user borrows, their collateral is evaluated at a
“borrow LTV,” and when liquidated, the same collateral is evaluated at a
higher LTV (partial liquidation LTV and full liquidation LTV). This design
ensures that users cannot be instantly liquidated solely due to the
valuation gap between the borrowing and liquidation valuations.

27

https://github.com/Zest-Protocol/zest-core/blob/main/contracts/market/market.clar

In addition to this existing mitigation, Zest can implement further
mechanisms to reduce the effectiveness of such attacks.

Recommendation

Oracle frontrunning attacks cannot be fully mitigated. However, to reduce
the risk, an additional mechanism can be introduced: disallowing a user
from being liquidated in the same block in which they last borrowed.

This mechanism would specifically block flash-loan-based attacks, since
an attacker would be unable to borrow, be liquidated, and repay the flash
loan within the same transaction, even under an extreme price movement.

Because borrowing is only allowed when the collateral value, adjusted by
the borrow (maximum) LTV, exceeds the debt valuation, the likelihood
that a normal, honest user would avoid liquidation for one block in a
legitimate scenario is extremely low and can be considered an acceptable
trade-off.

28

[L-04] Use Intentional Unwrap Logic on
Asset Retrieval Path

Location:

assets.clar

Description Throughout the market contract, entry points first retrieve
asset information via a call to assets::get-asset-status :

(define-private (get-asset (asset principal))
 (contract-call? .assets get-asset-status asset))

This function reverts with an unwrap panic if an invalid asset is passed,
instead of returning a dedicated error code.

Recommendation

Update assets::get-asset-status and all related functions in the assets
contract so they revert with a specific error code when an invalid asset is
passed, rather than relying on an unwrap panic.

29

https://github.com/Zest-Protocol/zest-core/blob/0979317f6aacaa76190d53e3b5ce1446c046c2a6/contracts/registry/assets.clar

[L-05] Previews Incorrectly Overprice
Vault Shares

Location:

vault-sbtc.clar#L306-L311
vault-sbtc.clar#L313-L318
vault-sbtc.clar#L380-L381

Description
convert-to-shares-preview and convert-to-assets-preview are intended to
preview share conversions based on interest that has not yet been accrued
in the vault. They do this by using total-assets-preview , which accounts for
unaccrued interest in the system.

(define-private (total-assets-preview)
 (let ((current-assets (var-get assets))

(debt (debt-preview))
(borrowed (var-get total-borrowed))
(interest (if (> debt borrowed) (- debt borrowed) u0)))

 (+ current-assets interest)))

However, these functions do not account for the treasury LP share dilution
fee mechanism when accruing, which causes them to consistently
overprice shares by the amount owed to the treasury.

Since all mutating entry points of the vault accrue before calling the
preview functions, this issue only affects readonly data.

Similarly, principal-ratio-reduction uses total-debt instead of debt-
preview , which also results in incorrect readonly values.

Recommendation

Update the preview functions to take LP share dilution into account.

Example implementation for convert-to-shares-preview and convert-to-
assets-preview :

30

https://github.com/Zest-Protocol/zest-core/blob/0e81d76c755fde72134963ccc0d05bf0cef758bf/contracts/vault/vault-sbtc.clar#L306-L311
https://github.com/Zest-Protocol/zest-core/blob/0e81d76c755fde72134963ccc0d05bf0cef758bf/contracts/vault/vault-sbtc.clar#L313-L318
https://github.com/Zest-Protocol/zest-core/blob/0e81d76c755fde72134963ccc0d05bf0cef758bf/contracts/vault/vault-sbtc.clar#L380-L381

(define-private (convert-to-assets-preview (amount uint))
 (let ((ta (total-assets-preview))
 (ts (total-supply-preview)))
 (if (is-eq ta u0)
 u0
 (mul-div-down amount ta ts))))

(define-private (convert-to-shares-preview (amount uint))
 (let ((ta (total-assets-preview))
 (ts (total-supply-preview)))
 (if (is-eq ts u0)
 amount
 (mul-div-down amount ts ta))))

(define-private (total-supply-preview)
 (let ((current-supply (total-supply))
 (treasury-lp (calc-treasury-lp-preview)))
 (+ current-supply treasury-lp)))

(define-private (calc-treasury-lp-preview)
 (let ((scaled-principal (var-get principal-scaled))
 (idx (var-get index))
 (next (next-index))
 (old-debt (mul-div-down scaled-principal idx INDEX-PRECISION))
 (new-debt (mul-div-down scaled-principal next INDEX-PRECISION))
 (debt-delta (if (> new-debt old-debt) (- new-debt old-debt) u0))
 (reserve-inc (mul-div-down debt-delta (var-get fee-reserve) BPS))
 (ta-preview (total-assets-preview)))
 (if (> reserve-inc u0)
 (mul-div-down reserve-inc (total-supply) (- ta-preview reserve-inc))
 u0)))

principal-ratio-reduction :

(define-private (principal-ratio-reduction (amount uint))
 (calc-principal-ratio-reduction amount (var-get principal-scaled)
 (debt-preview)))

31

8.4. QA Findings

[QA-01] Add Ability to Disable Borrowing
Specific Assets Per EGroup

Location:

egroup.clar

Description In practice, there will be situations where the protocol may
wish to prevent users from borrowing a specific asset, but only while they
are in a particular EGroup.

The current implementation does not support this functionality.

Recommendation

Add a flag to each EGroup registry entry to enable or disable borrowing.
This flag should be checked in market::borrow to ensure that no further
borrows are allowed when disabled.

From an implementation perspective, we suggest:

In the LTV group registry, add a new uint field called BORROW-DISABLED-
MASK .
In this mask, each bit position corresponds to a debt asset ID, without
any offset by 64.
In each market::borrow call, retrieve this mask and check whether the bit
for the specific asset is set. If it is set, revert the borrow:

(asserts! (is-eq (bit-and disabled-borrow-mask
 (pow u2 asset-id)) u0) ERR-LTV-GROUP-ASSET-BORROW-DISABLED)

Note: the implementation uses a disable mask instead of an enable mask
because the most common and default case is for all borrowing to be
enabled. Also, since each group may have different sets of borrowable
assets, it is simpler not to require EGroup insertions to compute which

32

https://github.com/Zest-Protocol/zest-core/blob/main/contracts/registry/egroup.clar

assets to allow by default. Instead, passing 0u indicates that no assets are
blocked.

33

[QA-02] Ambiguous redeem Panic Revert
in Vault

Location:

vault-sbtc.clar#L787

Description
In the vault implementations, when a depositor wants to withdraw funds,
they call the redeem function with the number of shares to burn.

The redeem function checks that the user has enough tokens to burn:

(asserts! (>= balance amount) ERR-INSUFFICIENT-BALANCE)

This is intended to revert with a more meaningful error code than the
default burn error code of 1 :

(err u1) -- sender does not have enough balance to burn this amount or the

amount specified is not positive .

However, the convert-to-assets-preview call, which is executed before this
check, can revert with an arithmetic overflow if the value is sufficiently
large (e.g., MAX-UINT-128).

In such cases, external integrators may have difficulty debugging the failed
transaction.

Recommendation
Move the (asserts! (>= balance amount) ERR-INSUFFICIENT-BALANCE) check
into an inlined let binding immediately after retrieving the balance.
Apply this change to all vaults.

34

https://github.com/Zest-Protocol/zest-core/blob/71df5671b5227cc5f9e40e912145d33b0b13c829/contracts/vault/vault-sbtc.clar#L787

