
ZEST PROTOCOL BTCz SECURITY REVIEW

Conducted by:
KRISTIAN APOSTOLOV, ABA

SEPTEMBER 20TH, 2024

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

2

Clarity Alliance is a team of expert whitehat hackers specialising in
securing protocols on Stacks.

They have disclosed vulnerabilities that have saved millions in
live TVL and conducted thorough reviews for some of the largest
projects across the Stacks ecosystem.

Learn more about Clarity Alliance at clarityalliance.org.

1. About Clarity Alliance

http://clarityalliance.org

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

3

This report is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. This report is not, nor
should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts
Clarity Alliance to perform a security assessment.

This report does not provide any warranty or guarantee regarding
the absolute bug-free nature of the technology analyzed, nor do
they provide any indication of the technologies proprietors, business,
business model or legal compliance.

This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report
in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive
assessing process intending to help our customers increase the
quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level
of ongoing risk. Clarity Alliance’s position is that each company and
individual are responsible for their own due diligence and continuous
security. Clarity Alliance’s goal is to help reduce the attack vectors and
the high level of variance associated with utilizing new and consistently
changing technologies, and in no way claims any guarantee of security
or functionality of the technology we agree
to analyze.

The assessment services provided by Clarity Alliance are subject to
dependencies and under continuing development. You agree that your
access and/or use, including but not limited to any services, reports,
and materials, will be at your sole risk on an as-is, where-is, and as-
available basis.

Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. The assessment reports
could include false positives, false negatives, and other unpredictable
results. The services may access, and depend upon, multiple layers of
third parties. Notice that smart contracts deployed on the blockchain
are not resistant from internal/external exploit. Notice that active
smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Clarity Alliance does
not guarantee the explicit security of the audited smart contract,
regardless of the verdict.

2. Disclaimer

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

4

3. Introduction

5. Risk Classification

5.1 Impact

A time-boxed security review of the Zest Protocol BTCz
implementation, where Clarity Alliance reviewed the scope, whilst
simultaneously building out a testing suite for the protocol.

4. About Zest Protocol
Zest Protocol is a decentralized lending platform on Stacks that
enables users to trustlessly lend and borrow assets.

BTCz is a yield bearing BTC on Stacks. BTCz brings the best of
Stacks and Babylon together to create the most secure BTC staking
pool.

•	 High - leads to a significant material loss of assets in the
protocol or significantly harms a group of users.

•	 Medium - only a small amount of funds can be lost (such as
leakage of value) or a core functionality of the protocol is
affected.

•	 Low - can lead to any kind of unexpected behavior with some
of the protocol’s functionalities that’s not so critical.

Severity

Likelihood: High

Likelihood: Medium

Impact: High

Critical

High

Impact: Medium

High

Medium

Impact: Low

Medium

Low

Likelihood: Low Medium Low Low

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

5

5.2 Likelihood

5.3 Action required for severity levels

•	 High - attack path is possible with reasonable assumptions
that mimic on-chain conditions, and the cost of the attack is
relatively low compared to the amount of funds that can be
stolen or lost.

•	 Medium - only a conditionally incentivized attack vector, but
still relatively likely.

•	 Low - has too many or too unlikely assumptions or requires a
significant stake by the attacker with little or no incentive.

•	 Critical - Must fix as soon as possible (if already deployed)
•	 High - Must fix (before deployment if not already deployed)
•	 Medium - Should fix
•	 Low - Could fix

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

6

6. Security Assessment Summary

•	
•	
•	
•	

Review Commit Hash:
f730701455a8d34444f9b95869bf6290f0a99112

stacking-btc.clar

stacking-data.clar

btc-registry.clar

fee-data.clar

https://github.com/Zest-Protocol/zest-btcz/

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

7

7. Executive Summary
Over the course of the security review, Kristian Apostolov, ABA
engaged with Zest Protocol to review Zest Protocol. In this period of
time a total of 35 issues were uncovered.

Protocol Summary

Findings Count

Protocol Name

Severity

Total Findings 35

Amount

Date

Zest Protocol

September 20th, 2024

Low 7

QA 28

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

8

Summary of Findings

ID

[L-01]

[L-02]

[L-05]

[L-06]

[QA-01]

[QA-02]

[QA-03]

[QA-04]

[QA-05]

[QA-06]

[QA-07]

[QA-08]

[L-07]

[L-03]

[L-04]

Do not use tx-sender for sensitive operations

BTCz Token Name, Decimals, and
Symbol Should Not Be Changeable

Guard against withdrawal-direct-to-
deposit edge-case

Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck

Incorrectly Referencing BTCz as sBTC in Code

get-redeemable-btc-by-amount and
get-redeemable-btc return misleading
amount

Redundant Fee Address Logic on Stacks

Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract

Revoking Withdrawals Not Implemented

Overlapping Error Code Ranges

Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking

Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-
amount

The total-rewards Variable in staking-
btc::add-rewards Has a Misleading
Name

Use Errors Instead of Panicking

Lack of Event Logging for Sensitive Setters

Use is-in-mainnet to Check if Code is
Running on Mainnet

staking-btc::div-down can be simplified

Consider Moving Commission Logic
Off-Chain

Deposits to Contracts with Long
Names Are Stuck

Fee Value Can Surpass 100% and
Block Operations

Reward Commission Can Be Set
Over 100% and Block Adding Rewards

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Acknowledged

Acknowledged

Acknowledged

Low

Low

Low

Low

Low

Low

Low

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

Title Severity Status

[QA-09]

[QA-10]

[QA-12]

[QA-11]

[QA-13]

[QA-14]

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

9

Summary of Findings

ID

[QA-15]

[QA-17]

[QA-18]

[QA-19]

[QA-20]

[QA-16]

Reuse get-redeemable-btc-by-amount

Redundant Sender Variable Declaration

Remove Unused Constants

Redundant Function Wrappers in
Stacking-BTC Contract

Unused rewards-left Variable

Unused staking-btc::create-order-0-
or-fail Function

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

QA

QA

QA

QA

QA

QA

Title Severity Status

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

10

8. Findings

Throughout the contract, there are instances where
is used instead of		 or passing the caller address.

By doing this, operators who fall victim to phishing scams and
interact with malicious contracts can unwittingly interact with the
codebase and execute sensitive operations.

For example, if an operator interacts with a malicious contract, that
contract can then call the				
function with a maliciously controlled payload.

Another example is a user interacting with a malicious contract,
which could then initiate withdrawals on their behalf via the
				 .

Of course, the above cases cannot happen without operator and
user negligence.

8.1. Low Findings

[L-01] Do not use		 for sensitive
operations

Description

Recommendation
Use			 instead of		 in all instances
outside of the SIP-10		 function and contract-deployer
type variables.

tx-sender

transfer

tx-sender

contract-caller

contract-caller

btc-registry::set-peg-in-sent

staking-btc::init-withdraw

tx-sender

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

11

[L-02] BTCz Token Name, Decimals, and
Symbol Should Not Be Changeable

The	 token contract currently allows for the symbol, decimals,
and name of the underlying fungible token to be changed.

The name and symbol, in conjunction with the contract address,
should remain immutable. Any external integrator or price aggregator
that uses these elements in their UI will cause user confusion if they
are ever changed.

Although SIP-10 does not explicitly mention this, it is generally
understood that once a fungible token has launched, its name and
symbol should never change.

The decimals attribute is critical for any fungible token. Changing
it after deployment would have catastrophic implications and must
never be done.

Description

Recommendation
Remove the		 ,		 , and	 functions
from the	 contract. Additionally, replace the data
variables that hold this information with constants, as they should
not be changeable.

BTCz

set-symbol set-decimals set-name

token-btc

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

12

[L-03] Fee Value Can Surpass 100% and
Block Operations

The		 contract contains functionality to change the
implicit pegging fees. However, there is no enforcement to ensure
that the fee values are valid during the operation of changing the
fees. Consequently, the fee values can mistakenly be set to over
100%, causing the		 contract operations to revert.

Description

Recommendation
In the		 contract, when setting the new fees in the
		 and			 functions, validate that the
new fee does not exceed 100% (i.e., over).

fee-data

staking-btc

fee-data

set-peg-out-fee set-peg-in-fee

ONE_8

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

13

[L-04] Reward Commission Can Be Set
Over 100% and Block Adding Rewards

The		 contract includes functionality to change the
reward deduction commission. However, there is no validation to
ensure that the commission percentage is within a valid range.
Consequently, the commission value can mistakenly be set to over
100%, causing the		 contract to revert when calling
the		 function.

Description

Recommendation
In the		 contract, when setting the new commission
value in the			 function, validate that the new fee
does not exceed 100% (i.e., over).

staking-btc

add-reward

staking-data

staking-data

set-commission

ONE_8

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

14

[L-05] Guard against withdrawal-direct-to-
deposit edge-case

A malicious actor can attempt to perform a Denial of Service (DoS)
attack on the bridge by initiating a withdrawal with the peg-out
address being the same as the peg-in address for deposits.

On-chain, this simply results in user funds being lost, but off-chain,
depending on how the bridging software is implemented, it may
reach an odd state which can delay further bridge operations.

Description

Recommendation
An on-chain solution would be to validate that the
argument from the		 function is not an approved
peg-in address.

However, due to the extremely unlikely nature of this edge case,
adding an on-chain fix would redundantly increase execution
costs. As such, the recommendation is to take this situation into
consideration in the off-chain bridging software.

peg-out-address

init-withdraw

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

15

[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck

As the bridging system is currently implemented, users deposit
Bitcoin by transferring BTC to the pegging Bitcoin addresses along
with a script output containing the Stacks address that receives the
bridged BTCz tokens.

On the Stacks side, any user can call				 with
the transaction buffer from the Bitcoin chain to finalize the deposits
and mint BTCz. Both operations are permissionless.

When reading the Stacks deposit address from the Bitcoin
transaction on Stacks, the current implementation can handle only
directly pushed script data or data pushed using the
opcode.

However, the Stacks address can also be passed in a Bitcoin
transaction using the		 and	 opcodes. If a
user attempts to deposit Bitcoin in the bridge using these opcodes,
their transaction would be blocked in the Bitcoin address as the
	 call on Stacks would revert due to unsupported opcodes.

Description

Recommendation
To support the use of the		 and		 opcodes,
significant alterations must be made to both the
and				 contracts.

It is also generally uneconomical for users to use the
and 		 opcodes in this case, as it would redundantly
increase the fees for the Bitcoin transaction.

As this is a particularly rare case, the recommendation is to clearly
document this limitation and implement an off-chain mechanism to
allow stuck Bitcoin deposits to be returned to the depositor.

stacking-btc::deposit

PUSHDATA1

PUSHDATA2

PUSHDATA2

PUSHDATA2

PUSHDATA4

PUSHDATA4

stacking-btc

clarity-bitcoin-v1-02

PUSHDATA3

deposit

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

16

[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

Using the				 and
functions from the		 contract, a user may estimate how
much BTC they would receive after converting their	 .

However, these functions display the value before fees are d
educted, not after. Therefore, the actual amount a user would receive
is less.

Description

Recommendation
Document this behavior with an internal comment and create two
additional functions with the same logic that return the amounts
after fees are deducted.
For example,						 and
				 .	

get-redeemable-btc-by-amount

get-redeemable-btc-by-amount-after-fees

get-redeemable-btc-after-fees

get-redeemable-btc

stacking-btc

BTCz

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

17

As the bridging system is currently implemented, users deposit
Bitcoin by transferring BTC to the peg-in Bitcoin addresses along
with a script output containing the Stacks principal address that
receives the bridged BTCz tokens. The script output uses the
	 plus	 opcodes to pass the Stacks principal
address.

On the Stacks side, any user can call					
with the TX buffer from the Bitcoin chain to finalize the deposits
and mint BTCz. Both operations are permissionless.

Bitcoin consensus logic currently limits the data returned by
	 to 80 bytes (83 bytes including the 3 overhead
bytes). This limit, combined with the Stacks contract address
format, enforces a maximum Stacks contract principal name of
no more than 52 characters, even though Clarity smart contract
names support a maximum length of 128 characters.

This means that depositing BTC using the bridge to contract
addresses with names longer than 52 characters is not supported.
This limitation is known by the team and will be documented in the
bridge documentation.

However, to surpass this limit, some depositors may coordinate
with miners to either use the			 option or Peter
Todd’s “Libre Relay” patch.

While this is unlikely, if such a deposit is made, depositors need to
be aware of another limitation regarding how the contract name is
retrieved.

When reading the Stacks deposit address from the Bitcoin
transaction on Stacks, although the current implementation
extracts the passed address from the		 opcode, which
supports data up to 255 bytes in length, the actual Clarity smart
contract implementation only supports a maximum script size of
128 bytes.

This means that contract addresses with names longer than 102
characters are not supported, even if the deposit bypasses the
original 80-byte	 limit.

8.2. QA Findings

[QA-01] Deposits to Contracts with Long
Names Are Stuck

Description

OP_RETURN

OP_RETURN

PUSHDATA1

PUSHDATA1

-datacarriersize

stacking-btc::deposit

OP_RETURN

https://x.com/peterktodd/status/1750019647586320440
https://x.com/peterktodd/status/1750019647586320440

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

18

To support the full use of the		 size and a maximal
Stacks address, significant alterations must be made to both the
		 and				 contracts.

Even if the general Bitcoin consensus eventually increases the
default		 limit, making this scenario plausible, it remains
a very unlikely edge case for which fixing it on-chain is not
justified.

Thus, the recommendation is to document the current bridging
system constraints and implement an off-chain mechanism to
allow stuck Bitcoin deposits to be returned to the depositor.

To break down why this is so, consider the script data using the
default		 and opcodes to store a contract
principal:

1 byte is used for the		 , another for the
opcode, 1 byte to store the length of the		 payload, 2
bytes for the Stacks address type, 20 bytes for its HASH160, and
another byte for the length of the contract name. This amounts to
1 + 1 + 1 + 2 + 20 + 1 = 26 bytes.

Thus, the remaining space for the contract name is 128 - 26 = 102
bytes. As Stacks permits the contract name to be 128 characters
in length, deposits that bypass the		 limit with that intent
in mind, although unlikely, would remain stuck in the Bitcoin peg-in
address.

6A - OP_RETURN opcode

4C - PUSHDATA1 opcode

L1

 - 1 byte for storing the length of the payload, in this case the Stacks Address, al

< --- from here down, the format belongs to a Stacks contract principal>

03 - A 1-byte type prefix

VV - version of the standard principal that issued the contract

20

 bytes - The 20-byte Hash160 of the standard principal that issued the contract

L2 - A 1-byte length of the contract name, up to 128

<The contract name, as ASCII bytes>

OP_RETURN

OP_RETURN

OP_RETURN

OP_RETURN

PUSHDATA1

PUSHDATA1

PUSHDATA1

stacking-btc clarity-bitcoin-v1-02

PUSHDATA1

Recommendation

https://github.com/stacksgov/sips/blob/main/sips/sip-005/sip-005-blocks-and-transactions.md
https://github.com/stacksgov/sips/blob/main/sips/sip-005/sip-005-blocks-and-transactions.md

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

19

In the		 contract, a principal		 variable is
managed. Additionally, there is a wrapper getter in the
	 for this value.

As the bridging system is implemented, fees are initially kept on
the Bitcoin side in the pegging-in address. The fees are retained
at the sources.

A fee address is irrelevant in the context of the Stacks blockchain,
making it redundant code.

Remove the		 logic from the entire codebase.

[QA-02] Redundant Fee Address Logic on
Stacks

Description
fee-data

staking-btc

fee-address

fee-address

Recommendation

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

20

The		 contract provides functionality to add extra
BTC to the internally tracked		 amount via the
	 function.

In practice, this function is called after the team has added or
donated extra BTC tokens to the peg-out Bitcoin address, thereby
increasing the overall value of the BTCz token.

A particular aspect of the		 logic is that it deducts
a commission amount from the input BTC amount and only
increments the total underlying BTC accounting value with the
remaining amount after the commission is deducted.

Since there is no other on-chain logic tied to the commission logic,
it may be simplest to move it completely off-chain. As only the
team can add rewards, they can choose the amount to add. They
can already keep a portion as a commission and only call the
	 function with the amount after the commission is
taken.

As it stands, the on-chain commission logic is used merely as a
display for users to determine how much commission the team
has kept out of a reward system that the team controls. Thus, it
does not make sense for it to exist on- chain.

[QA-03] Consider Moving Commission
Logic Off-Chain

Description
staking-btc

total-btc

add-rewards

add-rewards

add-rewards

Recommendation

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

21

The		 contract contains logic related to fees, such as
setting and getting the pegging in and pegging out fees, the peg
out gas fee, and the fee address recipient.

However, it also includes logic for pausing and unpausing pegging
in/out. This functionality is not fee-related and, as such, is out of
place in the		 contract.

One option is to move the pausing pegging in/out functionality to
a different contract. By doing so, you also gain the granularity of
having a separate principal responsible for pausing/unpausing,
different from the one responsible for changing the fees.

Another option is to change the	 contract name to a
more inclusive one, such as		 .

[QA-04] Pausing Pegging In/Out
Functionality Should Not Be in the Fee-
Data Contract

Description
fee-data

fee-data

fee-data

peg-manager

Recommendation

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

22

The current withdrawal data structure, which is used to save any
executed withdrawal on-chain, includes an unused		 field.

If the		 field is intended for use in a future version,
please acknowledge this issue. Otherwise, implement the missing
functionality.

[QA-05] Revoking Withdrawals Not
Implemented

Description

revoked

revoked

Recommendation

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

23

Within the codebase, each contract has a unique error code range
to easily identify the contract from which the error was sent.

However, the		 contract shares the same range as the
			 . Since		 calls functions from
the			 contract, this overlap can cause
confusion when debugging failed transactions.

Change the		 contract error code range to one that
is not already used, such as 6000-6999. Keep in mind that ranges
below 1000 are typically reserved for SIP standards and internal
Stacks functions.

[QA-06] Overlapping Error Code Ranges

Description

staking-btc

staking-btc

staking-btcclarity-bitcoin-v1-02

clarity-bitcoin-v1-02

Recommendation

btc-registry 		 2000-2999

clarity-bitcoin-v1-02 	 1000-1999

fee-data 		 3000-3999

ft-trait 		 None

stacking-btc 		 1000-1999

stacking-data 		 4000-4999

token-btc 		 5000-5999

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

24

Within the		 codebase, there are references to the 	
 token (contract token-btc) as both	 and	 . This
creates slight confusion for any integrator, as the	 Stacks
token may be misinterpreted when reading the codebase.

Change all occurrences of	 to	 within the
	 contract.

[QA-07] Incorrectly Referencing BTCz as
sBTC in Code

Description
staking-btc

staking-btc

BTCz btcz sbtc

sbtc btcz

sBTC

Recommendation

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

25

When a deposit is made on the Bitcoin chain and the
			 function is called on the Stacks
blockchain, a fee in BTC is retained in the Bitcoin address. Only
the remaining equivalent BTC is converted to BTCz.

To help the team more easily identify this amount, which they can
retain on the Bitcoin side, add the	 variable amount to the 	
	 statement in the			 function.

[QA-08] Add Fee to
Print Call for Better Off-Chain Tracking

Description

stacking-btc::deposit

stacking-btc::deposit

fee

print

Recommendation

stacking-btc::deposit

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

26

The							 function
accepts an amount of BTCz tokens, which are then converted to
Bitcoin (BTC) tokens using the internal BTC to BTCz ratio.

However, the function’s amount variable is mistakenly named
	 instead of		 . This may lead to confusion
for any third-party integrators.

Rename the		 argument in
			 to btcz-amount.

[QA-09] Misleading Amount Argument
Name in stacking-btc::get-redeemable-
btc-by-amount

Description
stacking-btc::get-redeemable-btc-by-amount

redeemable-btc-by-amount

stacking-btc::get-

btc-amount

btc-amount

btcz-amount

Recommendation

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

27

In the				 function, the
variable stores the new, up-to-date total BTC amount, which
includes the newly added reward amount.

The name is misleading as it does not represent the total reward
amount that was added.

The variable is also emitted from a	 command with a
misleading label.

Rename the		 variable to a more appropriate
name, such as			 . Additionally, consider
implementing separate logic for tracking the total deposited
rewards if that is required.

[QA-10] The			 Variable in
				 Has a Misleading
Name

Description

staking-btc::add-rewards total-rewards

total-rewards

new-total-btc

print

Recommendation

total-rewards

staking-btc::add-rewards

(total-rewards (+ (get-total-btc) rewards))

(

print{action:”add-rewards”,

data:{final-commission:final-commission,

total-rewards:total-rewards}}

)

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

28

In the		 contract, there are instances where
		 is used instead of	 with a custom error.

Specifically, it is logically meaningful to add custom errors in the
following four instances:

•	 In the	 function, when accessing an index outside of
the transaction output array bounds.

•	 In				 , in both instances when slicing an
invalid order-script buffer.

Ending execution in a panic results in a runtime error. Runtime
errors cannot be handled by the caller and do not provide any
meaningful information about the execution. Therefore, they are
discouraged.

Use		 with a custom error instead of			 in the
mentioned instances.

[QA-11] Use Errors Instead of Panicking

Description

Recommendation

staking-btc

unwrap!

unwrap! unwrap-panic

deposit

unwrap-panic

decode-order-0-or-fail

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

29

Throughout the codebase, several sensitive setters do not log
information when called, which hinders off-chain parsers from
tracking changes.

Adding logs that capture the old and new values would assist off-
chain trackers in creating a comprehensive timeline of the bridge’s
state and activity.

Implement logging with relevant information in all sensitive setters
within the codebase.

[QA-12] Lack of Event Logging for
Sensitive Setters

Description

Recommendation

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

30

When verifying that the current code is running on the Stacks
mainnet, use the internal keyword		 instead of
comparing the chain ID to 1 with			 .

Using			 enhances code readability and reduces
execution costs.

Use		 to check if the code is running on the
mainnet.

[QA-13] Use			 to Check if
Code is Running on Mainnet

Description

Recommendation

is-in-mainnet

is-in-mainnet

is-in-mainnet

(is-eq chain-id u1)

is-in-mainnet

https://docs.stacks.co/reference/keywords#is-in-mainnet-clarity2

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

31

The				 function has two arguments,	 and 	
 , and:

1. Checks if is 0 and, if so, returns 0.
2. Otherwise, returns			 .

The first operation, checking if is 0, is redundant for several
reasons:

•	 If is 0, the result of the second branch would also be 0.
•	 It actually increases the execution fee over time, which will be

elaborated on.

	 is called in two places: directly from the
function and in the				 function.

In the 		 function,	 is called with	 as the BTC
amount after fees. This is never 0 because, to be a successful
transfer on the Bitcoin network, a minimum amount greater than 0
will always exist due to the implicit dust limit, and the subtracted
Zest fee is a percentage of that.

Within the			 function, the only time
	 is called with 0 for	 is when there has not been even
one BTC deposit into the bridge. In that case, and only that case,
it acts as a slight fee optimization.

However, after one BTC bridge deposit, it will always be called
redundantly, increasing the fees on each call.

Remove the	 statement from the		 function and keep
only the	 branch logic.

[QA-14] staking-btc::div-down can be
simplified

Description

Recommendation

staking-btc::div-down a

a

a

a

a

a

if

else

div-down

(a * 1e8 / b)

div-down

get-btc-to-sbtc-ratio

get-btc-to-sbtc-ratio

deposit

deposit div-down

div-down

b

(define-read-only (div-down (a uint) (b uint))

	 (if (is-eq a u0)

		 u0

		 (/ (* a ONE_8) b)))	

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

32

In the					 function, the redeemable
amount is retrieved as follows:

However, there is already a function
	 that performs the same operation, resulting in duplicated
code within the		 function.

Reuse the				 function when
executing the			 operation.

[QA-15] Reuse get-redeemable-btc-by-
amount

Description

Recommendation

init-withdraw

init-withdraw

get-redeemable-btc-by-amount

staking-btc::init-withdraw

(btc-to-sbtc-ratio (get-btc-to-sbtc-ratio))

(redeemable-btc (mul-down btcz-amount btc-to-sbtc-ratio))

staking-btc::get-redeemable-

amount

https://github.com/Clarity-Alliance/zest-sbtc/blob/main/onchain/contracts/stacking-btc.clar#L137-L138
https://github.com/Clarity-Alliance/zest-sbtc/blob/main/onchain/contracts/stacking-btc.clar#L137-L138

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

33

In the				 function, the sender is declared
within a command as			 and subsequently
used when minting the BTCz tokens. Adding a new variable that
simply copies an existing principal is redundant.

Additionally, from a contextual standpoint, using		 is
more appropriate since it represents the entity that will receive the
BTCz tokens on the Stacks blockchain, rather than the entity that
initiated the deposit on the Bitcoin block.

Remove the			 declaration and use
instead of	 .

[QA-16] Redundant Sender Variable
Declaration

Description

Recommendation

staking-btc::deposit

(sender recipient)

(sender recipient)

recipient

recipient

sender

let

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

34

In the		 contract, there are two unused constants: 	
			 and					 .

Remove the unused constants. Then, adjust the remaining
constant values to be incremental (i.e., from u1000 to u1008
without gaps).

[QA-17] Remove Unused Constants

Description

Recommendation

staking-btc

err-address-mismatch err-tx-mined-before-request

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

35

In the				 function, the
variable is declared using a	 command but is never utilized.

Remove the unused		 variable.

[QA-18] Unused			 Variable

Description

Recommendation

staking-btc::add-rewards rewards-left

rewards-left

rewards-left

let

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

36

Within the		 contract, the
function is unused and does not serve any useful off-chain
calculation, making it redundant.

Remove the						 function.

[QA-19] Unused staking-btc::create-order-
0-or-fail Function

Description

Recommendation

staking-btc create-order-0-or-fail

staking-btc::create-order-0-or-fail

Security Review

Zest Protocol
sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Zest Protocol
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Low Findings

[L-01] Do not use tx-sender for sensitive operations
[L-02] BTCz Token Name, Decimals, and Symbol
Should Not Be Changeable
[L-03] Fee Value Can Surpass 100% and Block
Operations
[L-04] Reward Commission Can Be Set Over 100%
and Block Adding Rewards
[L-05] Guard against withdrawal-direct-to-deposit
edge-case
[L-06] Bitcoin Deposits via PUSHDATA2
and PUSHDATA4 Opcodes Are Stuck
[L-07] get-redeemable-btc-by-amount and
get-redeemable-btc return misleading amount

8.2. QA Findings
[QA-01] Deposits to Contracts with Long Names
Are Stuck
[QA-02] Redundant Fee Address Logic on Stacks
[QA-03] Consider Moving Commission Logic
Off-Chain
[QA-04] Pausing Pegging In/Out Functionality
Should Not Be in the Fee-Data Contract
[QA-05] Revoking Withdrawals Not
Implemented
[QA-06] Overlapping Error Code Ranges
[QA-07] Incorrectly Referencing BTCz as
sBTC in Code
[QA-08] Add Fee to stacking-btc::deposit Print
Call for Better Off-Chain Tracking
[QA-09] Misleading Amount Argument Name
in stacking-btc::get-redeemable-btc-by-amount
[QA-10] The total-rewards Variable in staking-
btc::add-rewards Has a Misleading Name
[QA-11] Use Errors Instead of Panicking
[QA-12] Lack of Event Logging for Sensitive Setters
[QA-13] Use is-in-mainnet to Check if Code is
Running on Mainnet
[QA-14] staking-btc::div-down can be simplified
[QA-15] Reuse get-redeemable-btc-by-amount
[QA-16] Redundant Sender Variable Declaration
[QA-17] Remove Unused Constants
[QA-18] Unused rewards-left Variable
[QA-19] Unused staking-btc::create-order-0-
or-fail Function
[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

2
3
4
4
4
4
5
5
6
7
7
10
10
11

12

13

14

15

16

17
17

19
20

21

22

23
24

25

26

27

28
29
30

31
32
33
34
35
36

37

37

In the		 contract, there are multiple function wrappers
that merely pass through calls to the 		 ,		 ,
or		 contracts.

Examples:

With the exception of two function wrappers,			 and
		 , all other existing function wrappers are called
only once from the		 contract. This redundancy
increases the contract code size without providing any benefit.
Each of the underlying functions can be called directly without the
need for these wrappers.

Remove the following functions from the		 contract
and inline their original calls in the code:

[QA-20] Redundant Function Wrappers in
Stacking-BTC Contract

Description

Recommendation

stacking-btc

stacking-btc

stacking-btc

staking-data

fee-data btc-registry

get-total-btc

set-total-btc

(define-read-only (is-peg-in-paused)

	 (contract-call? .fee-data is-peg-in-paused))

(define-read-only (is-peg-in-address-approved (address (buff 128)))

	 (contract-call? .btc-registry is-peg-in-address-approved address))

(define-read-only (get-withdrawal-or-fail (id uint))

	 (contract-call? .stacking-data get-withdrawal-or-fail id))

•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

is-peg-in-paused

is-peg-out-paused

get-peg-in-fee

get-peg-out-fee

get-peg-out-gas-fee

get-fee-address (this function isn’t even called at all)
is-peg-in-address-approved

get-peg-in-sent-or-default

get-withdrawal-or-fail

get-commission

get-commission-total

get-withdrawal-nonce

set-commission-total

set-withdrawal-nonce

set-withdrawal

