
NAKAMOTO UPGRADE SECURITY REVIEW

Conducted by:
KRISTIAN APOSTOLOV, ABA, MARCHEV, ARABADZHIEV

SEPTEMBER 20TH, 2024

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

2

Clarity Alliance is a team of expert whitehat hackers specialising in
securing protocols on Stacks.

They have disclosed vulnerabilities that have saved millions in
live TVL and conducted thorough reviews for some of the largest
projects across the Stacks ecosystem.

Learn more about Clarity Alliance at clarityalliance.org.

1. About Clarity Alliance

http://clarityalliance.org

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

3

This report is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. This report is not, nor
should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts
Clarity Alliance to perform a security assessment.

This report does not provide any warranty or guarantee regarding
the absolute bug-free nature of the technology analyzed, nor do
they provide any indication of the technologies proprietors, business,
business model or legal compliance.

This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report
in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive
assessing process intending to help our customers increase the
quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level
of ongoing risk. Clarity Alliance’s position is that each company and
individual are responsible for their own due diligence and continuous
security. Clarity Alliance’s goal is to help reduce the attack vectors and
the high level of variance associated with utilizing new and consistently
changing technologies, and in no way claims any guarantee of security
or functionality of the technology we agree
to analyze.

The assessment services provided by Clarity Alliance are subject to
dependencies and under continuing development. You agree that your
access and/or use, including but not limited to any services, reports,
and materials, will be at your sole risk on an as-is, where-is, and as-
available basis.

Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. The assessment reports
could include false positives, false negatives, and other unpredictable
results. The services may access, and depend upon, multiple layers of
third parties. Notice that smart contracts deployed on the blockchain
are not resistant from internal/external exploit. Notice that active
smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Clarity Alliance does
not guarantee the explicit security of the audited smart contract,
regardless of the verdict.

2. Disclaimer

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

4

3. Introduction

5. Risk Classification

A time-boxed security review of the Nakamoto upgrade
implementation, where Clarity Alliance reviewed the scope, whilst
simultaneously building out a testing suite for the protocol.

4. About Stacks Nakamoto Upgrade
The Nakamoto Release is an upcoming hard fork on the Stacks
network designed to bring several benefits, chief among them are
increased transaction throughput and 100% Bitcoin finality. Learn
about the Nakamoto Activation sequence here: Nakamoto Activation
Sequence

Bitcoin block 840,360 marked the start of the multi-phase Nakamoto
mainnet rollout.

With Nakamoto, Stacks block production would no longer be tied to
miner elections. Instead, miners produce blocks at a fixed cadence,
and the set of PoX Stackers rely on the miner elections to determine
when the current miner should stop producing blocks and a new
miner should start. This blockchain will only fork if 70% of Stackers
approve the fork, and chain reorganization will be as difficult as
reorganizing Bitcoin.

The Nakamoto release brings many new capabilities and
improvements to the Stacks blockchain by focusing on a set of core
advancements: improving transaction speed, enhancing finality
guarantees for transactions, mitigating Bitcoin miner MEV (miner
extractable value) opportunities that affect PoX, and boosting
robustness against chain reorganizations.

Severity

Likelihood: High

Likelihood: Medium

Impact: High

Critical

High

Impact: Medium

High

Medium

Impact: Low

Medium

Low

Likelihood: Low Medium Low Low

https://docs.stacks.co/nakamoto-upgrade/nakamoto-rollout-plan#nakamoto-activation-sequence
https://docs.stacks.co/nakamoto-upgrade/nakamoto-rollout-plan#nakamoto-activation-sequence
https://docs.stacks.co/nakamoto-upgrade/nakamoto-rollout-plan
https://docs.stacks.co/nakamoto-upgrade/nakamoto-rollout-plan

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

5

5.1 Impact

•	 High - leads to a significant material loss of assets in the
protocol or significantly harms a group of users.

•	 Medium - only a small amount of funds can be lost (such as
leakage of value) or a core functionality of the protocol is
affected.

•	 Low - can lead to any kind of unexpected behavior with some
of the protocol’s functionalities that’s not so critical.

5.2 Likelihood

5.3 Action required for severity levels

•	 High - attack path is possible with reasonable assumptions
that mimic on-chain conditions, and the cost of the attack is
relatively low compared to the amount of funds that can be
stolen or lost.

•	 Medium - only a conditionally incentivized attack vector, but
still relatively likely.

•	 Low - has too many or too unlikely assumptions or requires a
significant stake by the attacker with little or no incentive.

•	 Critical - Must fix as soon as possible (if already deployed)
•	 High - Must fix (before deployment if not already deployed)
•	 Medium - Should fix
•	 Low - Could fix

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

6

6. Security Assessment Summary
The engagement scope was localized on Nakamoto Upgrade critical changes,
introduced to the		 codebase, contained within the following
PRs:

PR	 fix:		 to synthetic			 event

PR	 modify nakamoto block header to use

PR	 Add v0 signer			 paths

PR	 feat: gather v0 block signatures from stackerdb

PR	 Feat/tenure extend transactions

PR	 Feat/nakamoto block push

PR	 Feat: PoX punish/reward via bitvec

PR	 End of tenure test

PR	 MARF’ed Nakamoto chainstate

PR	 Feat: push blocks to signer set and add

4728

4781

4788

4807

4827

4877

4879

4919

4930

4902

add-signer-key

stacks-core

stack-aggregation-increase

Vec<MessageSignature>

/v3/blocks/upload/

process_event

https://github.com/stacks-network/stacks-core/pull/4728/
https://github.com/stacks-network/stacks-core/pull/4728/
https://github.com/stacks-network/stacks-core/pull/4728/
https://github.com/stacks-network/stacks-core/pull/4728/
https://github.com/stacks-network/stacks-core/pull/4728/
https://github.com/stacks-network/stacks-core/pull/4728/
https://github.com/stacks-network/stacks-core/pull/4728/
https://github.com/stacks-network/stacks-core/pull/4728/
https://github.com/stacks-network/stacks-core/pull/4728/
https://github.com/stacks-network/stacks-core/pull/4728/
https://github.com/stacks-network/stacks-core

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

7

7. Executive Summary
Over the course of the security review, Kristian Apostolov, ABA,
marchev, Arabadzhiev engaged with Stacks Foundation to review
Stacks Nakamoto Upgrade. In this period of time a total of 34 issues
were uncovered.

Protocol Summary

Findings Count

Protocol Name

Severity

Total Findings 34

Amount

Repository

Date

Protocol Type

https://github.com/stacks-network/stacks-core

Stacks Nakamoto Upgrade

September 20th, 2024

DLT Upgrade

Medium 3

Low 5

QA 26

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

8

Summary of Findings

ID

[M-03]

[L-01]

[L-02]

[L-03]

[L-04]

[L-05]

[QA-01]

[QA-02]

[QA-03]

[QA-04]

[QA-05]

[QA-06]

[QA-07]

[QA-08]

[M-01]

[M-02]

Sortition DB Instantiation Creates Wrong
Schema Version

Missing Error Handling in Case of Failed
Block Push

Typographical Errors

Block Timestamp Can Be 15 Seconds into
the Future

Incorrect Tenure Chainstate Schema
Migration from Version 3 to Version 4

The time complexity of
NakamotoChainState::check_pox_bitvector
could be reduced from O(mn) to O(n)

Block PoX Bitvec Header Lacks Edge Valida-
tions Against Miner Block Commit Punishments

Misleading Warning Message When Submitting
Proposal Response to .signers Fails

Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler

Misleading rustdoc for
SignerRunLoop#main_loop

Missing Implementation for
Signer#updateSigner()

The
StackerDB#send_message_bytes_with_retry()
implementation could be simplified

Miner signature hash does not contain POX
treatment bitvec

Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB

Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments

Insufficient Error Handling When Calling
insert_burn_block

Resolved

Resolved

Resolved

Resolved

Resolved

Acknowledged

Acknowledged

Acknowledged

Acknowledged

Acknowledged

Acknowledged

Acknowledged

Resolved

Resolved

Resolved

Resolved

HighMedium

Medium

Medium

Low

Low

Low

Low

Low

QA

QA

QA

QA

QA

QA

QA

QA

Title Severity Status

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

9

Summary of Findings

ID

[QA-09]

[QA-10]

[QA-14]

[QA-15]

[QA-17]

[QA-18]

[QA-19]

[QA-20]

[QA-21]

[QA-22]

[QA-23]

[QA-24]

[QA-25]

[QA-26]

[QA-16]

[QA-12]

[QA-11]

[QA-13]

BACKOFF_MAX_INTERVAL should not ex-
ceed BACKOFF_MAX_ELAPSED

Improve new_tenure and tenure_extended
Variable Naming

Sign Coordinator v0 Logging Discrepancies

Improve NET Relayer Logging

NakamotoBlocksData Consensus
Deserialization Can Be Optimized

Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code

Use Constants Instead of Magic Numbers in
RPCRequestHandler

NakamotoStagingBlocksConnRef::has_chil-
dren is never used

mod::NakamotoChainState::check_pox_
bitvector can be simplified

Use Descriptive Variable Names

Unused Imports

Incorrect Sortition DB Schema 4 SQL
Commands

Improve Nakamoto Node Miner Thread
Debug Logging

Continue Tenure Directive Logging
Ambiguities

Indistinguishable
NakamotoBlockBuilder::load_tenure_info
Error Messages

Improve Logging in Nakamoto Chainstate
Module Code

Wrapping versus Saturating Reward Cycle
Inconsistencies

Move force_send Configuration to Connec-
tionOptions

Resolved

Resolved

Resolved

Acknowledged

Acknowledged

Acknowledged

Acknowledged

Acknowledged

Acknowledged

Partially
Resolved

Acknowledged

Acknowledged

Acknowledged

Acknowledged

Acknowledged

Acknowledged

Acknowledged

Acknowledged

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

Title Severity Status

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

10

In the			 component, the PoX bitvec is validated
via the				 function. This function ensures that
the current block’s bitvec header matches the miner’s block commit
punishments bitvec according to specific rules.

To perform validations, a bit array,			 , is created.
This array associates each address from the miner’s block commit
punishment array to a reward set entry and then correlates it with
the block’s bitvec header.

There are three main validations to be performed on this array:

An issue arises specifically when the block header’s bitvec is
smaller than the reward set. In this case, since the default value
used when populating the intermediary 		 vector is
true (1), the case if all of them are 0, must have punished is not
enforced.

The validation is never reached because, when checking that the 	
		 are 0 (via the		 variable):

[M-01] Block Bitvec Header Incorrectly
Validated Against Miner Block Commit
Punishments

Description
NakamotoChainState

check_pox_bitvector

bitvec_values

bitvac_values

bitvac_values all_0

// if any of them are 0, punishment is okay.

// if all of them are 1, punishment is not okay.

// if all of them are 0, *must* have punished

// if all of them are 0, *must* have punished

 let bitvec_values: Result<Vec<_>, ChainstateError> = // ... code ...

 let all_0 = bitvec_values.iter().all(|x| !x);

 if all_1 {

 // ... code ...

 } else if all_0 {

 if treated_addr.is_reward() {

	 warn!(

			 “Invalid Nakamoto block: rewarded PoX address when bitvec containe

	 “reward_address” => %treated_addr.deref(),

	 “bitvec_values” => ?bitvec_values,

);

	 return Err(ChainstateError::InvalidStacksBlock(

	 “Bitvec does not match the block commit’s PoX handling”.into(),

));

 }

 }

PR: 4879

8.1. Medium Findings

8. Findings

https://github.com/stacks-network/stacks-core/blob/e724d6cf5401c0a6eb5d62779b42252ba3ad9307/stackslib/src/chainstate/nakamoto/mod.rs#L2955-L2969
https://github.com/stacks-network/stacks-core/blob/e724d6cf5401c0a6eb5d62779b42252ba3ad9307/stackslib/src/chainstate/nakamoto/mod.rs#L2955-L2969
https://github.com/stacks-network/stacks-core/pull/4879/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

11

The	 branch will not execute, as the extra padded values are
 , thus allowing the case where all			 are 0, but the
treated address is rewarded.

Therefore, a situation can occur where the block header’s bitvec
is smaller than the reward set, and the miner’s block punishment is
a reward, but the current block’s bitvec indicates a punishment. In
this case, the check is skipped, and no error is returned.

Create the		 up to the length of the
		 ’s addresses enumeration.

bitvec_values

Description

Recommendation

else

1 bitvec_values

active_reward_set

https://github.com/stacks-network/stacks-core/blob/e724d6cf5401c0a6eb5d62779b42252ba3ad9307/stackslib/src/chainstate/nakamoto/mod.rs#L2984-L2993

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

12

There is a discrepancy in the way failed calls to		
and			 are handled. When the
function fails, a custom panic is triggered:

signer.rs#L403-L405

Add error handling logic that panics or throws a custom error
whenever a call to the 			 function fails.

However, for the 			 function, a failure only results
in a custom message being logged at the	 level:

signer.rs#L403-L405

Since both functions are used at least once in the execution
paths of process_event, this means that when		 is
called, unexpected situations can occur. This is because normal
STX blocks and burnchain blocks are not treated equally when an
error occurs during their persistence to the database.

[M-02] Insufficient Error Handling When
Calling

Description

Recommendation

warn

insert_block

insert_block

process_event

insert_burn_block

insert_burn_block

insert_burn_block

self.signer_db

.insert_block(&block_info)

.unwrap_or_else(|_| panic!(“{self}: Failed to insert block in DB”));

if let Err(e) = self.signer_db

.insert_burn_block(burn_header_hash, *burn_height, received_time)

{

warn!(

“Failed to write burn block event to signerdb”;

“err” => ?e,

“burn_header_hash” => %burn_header_hash,

“burn_height” => burn_height

);

}

PR: develop

insert_burn_block

https://github.com/stacks-network/stacks-core/blob/05280cd30f7da4f56e6bfe1c404768c9d0b24b80/stacks-signer/src/v0/signer.rs#L403-L405
https://github.com/stacks-network/stacks-core/blob/05280cd30f7da4f56e6bfe1c404768c9d0b24b80/stacks-signer/src/v0/signer.rs#L160-L170
https://github.com/stacks-network/stacks-core/blob/05280cd30f7da4f56e6bfe1c404768c9d0b24b80/stacks-signer/src/v0/signer.rs#L84-L190
http://github.com/stacks-network/stacks-core/tree/develop

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

13

When instantiating the			 , the schema version ends
up being incorrect due to the order in which migrations are applied.
Specifically, the schema 8 migration is applied after the schema 9
migration (the latest), resulting in the final sortition schema version
field being set to 8 (stale).

The issue occurs because				 is
executed before the
function call.

Move the schema 9 (and all subsequent schema improvements)
after the 				 call.

Although the internal fields of the database would be correct,
the schema version itself would be wrong. This discrepancy
could lead to potential database corruption, as some parts of the
codebase behave differently with schema 8 versus schema 9.

		 sets the schema version to 9:

However,				 then sets it to 8:

[M-03] Sortition DB Instantiation Creates
Wrong Schema Version

Description

Recommendation

SortitionDB

apply_schema_9

apply_schema_8_migration

apply_schema_8_migration

SortitionDB::apply_schema_9

SortitionDB::apply_schema_8_migration

SortitionDB::apply_schema_8_tables(&db_tx, epochs_ref)?;

SortitionDB::apply_schema_9(&db_tx, epochs_ref)?;

// ... code ...

db_tx.commit()?;

// NOTE: we don’t need to provide a migrator here because we’re not migrating

self.apply_schema_8_migration(None)?;

tx.execute(

“INSERT OR REPLACE INTO db_config (version) VALUES (?1)”,

&[“9”],

)?;

tx.execute(

“INSERT OR REPLACE INTO db_config (version) VALUES (?1)”,

&[“8”],

)?;

PR: 4879

https://github.com/stacks-network/stacks-core/blob/e724d6cf5401c0a6eb5d62779b42252ba3ad9307/stackslib/src/chainstate/burn/db/sortdb.rs#L3314-L3317
https://github.com/stacks-network/stacks-core/blob/e724d6cf5401c0a6eb5d62779b42252ba3ad9307/stackslib/src/chainstate/burn/db/sortdb.rs#L3297-L3299
https://github.com/stacks-network/stacks-core/pull/4879/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

14

When processing a				 event, the 	
	 fails to handle any		 s that might occur when
trying to post a Nakamoto block to a node:

8.2. Low Findings

[L-01] Missing Error Handling in Case of
Failed Block Push

Description

Recommendation
Handle any	 	 s returned by
for example, by logging a warning via		 or handling it more
appropriately depending on the severity and expectation of such
errors.

The implementation only handles the happy path scenario, and the
application does notreact to errors in any way.

SignerMessage::BlockPushed

Signer ClientError

ClientError

warn!()

stacks_client.post_block(b)

PR: 4879

SignerMessage::BlockPushed(b) => {

let block_push_result = stacks_client.post_block(b);

info!(

“{self}: Got block pushed message”;

“block_id” => %b.block_id(),

“signer_sighash” => %b.header.signer_signature_hash(),

“push_result” => ?block_push_result,

);

}

https://github.com/stacks-network/stacks-core/pull/4902/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

15

When the Stacks core reads the internal SQL database containing
the Nakamoto staging database, the code will always attempt to
migrate the schema if the current version is less than 2.

[L-02] Failing to Retrieve Nakamoto Staging
Blocks Version Will Wipe Entire DB

Description

Recommendation
Either modify the 				 schema to
simply update the existing table in case the mentioned issue
occurs, or revert when failing to determine the current database
schema, and do not default to schema 1.

However, when retrieving the DB version via the
					 function, if a read error
occurs, it defaults to version 1 instead of reverting:

Defaulting to schema 1 will then apply schema 2, which will first
drop the existing table before recreating the database:

This behavior is dangerous because, in the current configuration,
if there are any issues (e.g., storage/IO) with reading the schema
version, the entire database will be dropped.

get_nakamoto_staging_blocks_db_version

NAKAMOTO_STAGING_DB_SCHEMA_2

PR: 4930

pub fn open_nakamoto_staging_blocks(

path: &str,

readwrite: bool,

) -> Result<NakamotoStagingBlocksConn, ChainstateError> {

let exists = fs::metadata(&path).is_ok();

// ... code ...

if !exists {

// ... code ...

} else if readwrite {

Self::migrate_nakamoto_staging_blocks(&conn)?;

}

// ... code ...

}

pub fn migrate_nakamoto_staging_blocks(conn: &Connection) -> Result<

(), ChainstateError> {

let mut version = Self::get_nakamoto_staging_blocks_db_version(conn)?;

if version < 2 {

debug!(“Migrate Nakamoto staging blocks DB to schema 2”);

for cmd in NAKAMOTO_STAGING_DB_SCHEMA_2.iter() {

conn.execute(cmd, NO_PARAMS)?;

}

// ... code ...

}

Err(e) => {

debug!(“Failed to get Nakamoto staging blocks DB version: {:?}”, &e);

return Ok(1);

}

pub const NAKAMOTO_STAGING_DB_SCHEMA_2: &’static [&’static str] = &[

r#”

DROP TABLE nakamoto_staging_blocks;

“#,

https://github.com/stacks-network/stacks-core/pull/4930/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

16

The newly added block timestamp is described as follows:

However, during validation:

the second requirement is not fully respected because the
timestamp can be exactly 15 seconds into the future, making the
actual enforced condition less than 16 seconds into the future,
which is incorrect.

[L-03] Block Timestamp Can Be 15 Seconds
into the Future

Description

Recommendation
Change the block header timestamp future check from to so
that it does not consider 15 seconds into the future as valid.

> >=

PR: 4930

/// A Unix time timestamp of when this block was mined, according to the

// miner.

/// For the signers to consider a block valid, this timestamp must be:

/// * Greater than the timestamp of its parent block

/// * Less than 15 seconds into the future

pub timestamp: u64,

if self.block.header.timestamp > get_epoch_time_secs() + 15 {

return Err(BlockValidateRejectReason {

reason_code: ValidateRejectCode::InvalidBlock,

reason: “Block timestamp is too far into the future”.into(),

});

}

https://github.com/stacks-network/stacks-core/pull/4930/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

17

To calculate the hash a miner must sign, the
							 function
is called.

This resulting hash is calculated on all fields from the
			 structure except the signatures, the signer
signature, and, of course, the miner signature itself since it
has not been signed yet.

The inner				 function, however, does
not take into consideration the newly added
BitVec field.

From a consensus point of view, this issue is not relevant as the
		 is taken into consideration by both the signer’s
signed message digest and when the
structure is serialized for consensus via the
function.

The impact is a deviation from the aforementioned documented
intent.

[L-04] Miner signature hash does not contain
POX treatment bitvec

Description

Recommendation
Add the		 field when calculating the hash in the 	
				 function or modify the comment to
indicate the current, different but intended behavior.

PR: 4930

/// Calculate the message digest for miners to sign.

/// This includes all fields _except_ the signatures.

pub fn miner_signature_hash(&self) -> Sha512Trunc256Sum {

self.miner_signature_hash_inner()

.expect(“BUG: failed to calculate miner signature hash”)

}

struct::NakamotoBlockHeader::miner_signature_hash

miner_signature_hash-inner

miner_signature_hash-inner

pox_treatment

pox_treatment

NakamotoBlockHeader

NakamotoBlockHeader

consensus_serialize

https://github.com/stacks-network/stacks-core/blob/cf6b8fa4bb8382978c3a2751c16fa39486b74080/stackslib/src/chainstate/nakamoto/mod.rs#L694
https://github.com/stacks-network/stacks-core/blob/cf6b8fa4bb8382978c3a2751c16fa39486b74080/stackslib/src/chainstate/nakamoto/mod.rs#L694
https://github.com/stacks-network/stacks-core/pull/4930/files
https://github.com/stacks-network/stacks-core/blob/cf6b8fa4bb8382978c3a2751c16fa39486b74080/stackslib/src/chainstate/nakamoto/mod.rs#L627
https://github.com/stacks-network/stacks-core/blob/cf6b8fa4bb8382978c3a2751c16fa39486b74080/stackslib/src/chainstate/nakamoto/mod.rs#L627

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

18

Due to a typo in the SQL command when migrating the transaction
chainstate schema from version 3 to version 4, the operation fails.

When a schema migration is initiated via the

function, the							
function is called:

During the migration from chainstate schema version 3 to 4, the
				 commands are executed:

The
commands also include the stackslib\src\chainstate\nakamoto\
tenure.rs::NAKAMOTO_TENURES_SCHEMA_1 sub-commands. It is
in this schema that, on line 134, a typo in the SQL command leads
to migration failure:

			 should be

[L-05] Incorrect Tenure Chainstate Schema
Migration from Version 3 to Version 4

Description

Detailed Description

Recommendation
Resolve the SQL command typo.

PR: 4827

StacksChainState::apply_schema_migrations(&tx, mainnet, chain_id)?;

“3” => {

// migrate to nakamoto 1

info!(“Migrating chainstate schema from version 3 to 4: nakamoto support”);

for cmd in NAKAMOTO_CHAINSTATE_SCHEMA_1.iter() {

tx.execute_batch(cmd)?;

}

}

stackslib\\src\\chainstate\\stacks\\db\\mod.rs::instantiate_db

stackslib/src/chainstate/nakamoto/mod.rs::NAKAMOTO_CHAINSTATE_SCHEMA_1

StacksChainState::apply_schema_migrations

NAKAMOTO_CHAINSTATE_SCHEMA_1

cause INETGER NOT NULL, cause INTEGER NOT NULL,

https://github.com/stacks-network/stacks-core/blob/11a6262651a82ad4d64f4a1148e9badfee209b7f/stackslib/src/chainstate/nakamoto/mod.rs#L150
https://github.com/stacks-network/stacks-core/blob/11a6262651a82ad4d64f4a1148e9badfee209b7f/stackslib/src/chainstate/nakamoto/mod.rs#L150
https://github.com/stacks-network/stacks-core/blob/11a6262651a82ad4d64f4a1148e9badfee209b7f/stackslib/src/chainstate/nakamoto/tenure.rs#L134
https://github.com/stacks-network/stacks-core/pull/4827/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

19

The function				 currently operates with a
time complexity of $O(mn)$, where m is the number of treated
addresses and n is the number of rewarded addresses. This is
because, for each treated address, the function iterates over the
entire			 list, which can lead to inefficiencies as
the size of the data grows.

8.3. QA Findings

[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector
could be reduced from O(mn) to O(n)

Description

Recommendation
To reduce the time complexity from $O(mn)$ to $O(n)$, we
recommend using a collection like	 or	 to pre-
process			 . By storing the
in a	 , lookups for each treated address can be performed
in constant time of $O(1)$, which would reduce the overall
complexity of the function to $O(n)$. This will significantly improve
performance, especially when dealing with large datasets.

check_pox_bitvector()

rewarded_addresses

HashMap HashSet

HashSet

rewarded_addresses rewarded_addresses

PR: 4879

https://github.com/stacks-network/stacks-core/pull/4902/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

20

[QA-02] Block PoX Bitvec Header Lacks
Edge Validations Against Miner Block
Commit Punishments

In the			 component, the PoX bitvector is
validated via the			 function. This function
ensures that the current block’s bitvec header matches the miner’s
block commit punishments bitvector.

However, there are two corner cases where no validation is
performed.

The first case occurs when the miner’s block commit punishments
address list is empty. In this scenario, the	 statement that
performs the validations is skipped:

This means that if the miner’s block commit punishments
(variable) are empty, the current
block’s bitvec header () can be any
value, as it is not validated against the miner’s block punishments,
as per the mentioned requirement.

The second case occurs when the miner’s punishments list contains
burn addresses. In this scenario, no check is performed:

Document these two special cases and implement validation for
both of them.

Description

Recommendation

NakamotoChainState

check_pox_bitvector

tenure_block_commit.treatment

tenure_block_pox.treatment

if

PR: 4879

if !tenure_block_commit.treatment.is_empty()

if treated_addr.is_burn() {

// Don’t need to assert anything about burn addresses.

// If they were in the reward set, “punishing” them is meaningless.

continue;

}

https://github.com/stacks-network/stacks-core/blob/e724d6cf5401c0a6eb5d62779b42252ba3ad9307/stackslib/src/chainstate/nakamoto/mod.rs#L3153
https://github.com/stacks-network/stacks-core/blob/e724d6cf5401c0a6eb5d62779b42252ba3ad9307/stackslib/src/chainstate/nakamoto/mod.rs#L2934-L2938
https://github.com/stacks-network/stacks-core/blob/e724d6cf5401c0a6eb5d62779b42252ba3ad9307/stackslib/src/chainstate/nakamoto/mod.rs#L2934-L2938
https://github.com/stacks-network/stacks-core/pull/4902/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

21

[QA-03] Typographical Errors

Throughout the codebase, there are several typos. Some are in
more sensitive locations and may cause other issues, which were
noted in separate findings, while others are in less critical places
such as comments or code naming.

Of particular importance is the					 typo,
which is also present in the SQL column naming. As such, a mass
fix should not be done, but rather on a case-by-case basis.

The following is a list of typos found in the codebase that appear in
several locations and can be replaced directly if searched as whole
words:

Description

transfering -> transferring

PR: develop

https://github.com/stacks-network/stacks-core/pull/4902/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

22

•	 desierialized -> deserialized
•	 contruct -> construct
•	 DkgPublicshares -> DkgPublicShares
•	 signaure -> signature
•	 atomicbool -> atomic bool
•	 RPCERror -> RPCError
•	 respues -> request
•	 Nakamato -> Nakamoto
•	 communciation -> communication
•	 StacksAdress -> StacksAddress
•	 addands -> addends
•	 reamining -> remaining
•	 structions -> structs
•	 suprising -> surprising
•	 Consennsus -> Consensus
•	 serializationn -> serialization
•	 contibuted -> contributed
•	 hext -> text
•	 unrecovarable -> unrecoverable
•	 oudated -> outdated
•	 Retreieve -> Retrieve
•	 decryoted -> decrypted
•	 cyrptographic -> cryptographic
•	 hexademical -> hexadecimal
•	 unspecificed -> unspecified
•	 sortitin -> sortition
•	 signtaure -> signature
•	 dispatcheer -> dispatcher
•	 addresess -> addresses
•	 constituant -> constituent
•	 minimial -> minimal
•	 recognizeable -> recognizable
•	 BittcoinTxInputStructured -> BitcoinTxInputStructured
•	 accomodate -> accommodate
•	 heigth -> height
•	 discontiguous -> discontinuous
•	 committedto -> committed to
•	 Unparseable -> Unparsable
•	 parseable -> parsable
•	 occured -> occurred
•	 unsoliciated -> unsolicited
•	 CoordiantorError -> CoordinatorError
•	 get_prepare_phase_end_sortition_id_for_reward_ccyle ->
•	 get_prepare_phase_end_sortition_id_for_reward_cycle
•	 reawrd -> reward
•	 sorition -> sortition
•	 conver -> convert
•	 superceded -> superseded
•	 interpreteted -> interpreted

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

23

•	 burchain -> burnchain
•	 check_intneded_sortition -> check_intended_sortition
•	 DescendencyStubbedSortitionHandle ->

DescendenceStubbedSortitionHandle
•	 infallable -> infallible
•	 sentinal -> sentinel
•	 attched -> attached
•	 sortiiton -> sortition
•	 cosnistent -> consistent
•	 reorog -> reorg
•	 procesed -> processed
•	 sortitoin -> sortition
•	 Nakamaoto -> Nakamoto
•	 sortiton -> sortition
•	 parnet -> parent
•	 begain -> began
•	 epcoh2 -> epoch2
•	 becuase -> because
•	 Nakamto -> Nakamoto
•	 slots_occuppied -> slots_occupied
•	 recieve -> receive
•	 InvalidChildOfNakomotoBlock -> InvalidChildOfNakamotoBlock
•	 proessed -> processed
•	 miroblock -> microblock
•	 non-sensical -> nonsensical
•	 unconfiremd -> unconfirmed
•	 confiremd -> confirmed
•	 issueing -> issuing
•	 backpr -> backptr
•	 descendents -> descendants
•	 refered -> referred
•	 anestor -> ancestor
•	 naonseconds -> nanoseconds
•	 smae -> same
•	 exepcted -> expected
•	 uncommmitted -> uncommitted
•	 expanaded -> expanded
•	 unkonwn -> unknown
•	 incomaptible -> incompatible
•	 tranasction -> transaction
•	 accouting -> accounting
•	 offerred -> offered
•	 incrementially -> incrementally
•	 aprse -> parse
•	 appned -> append
•	 sorition_id -> sortition_id
•	 begining -> beginning
•	 issuring -> issuing
•	 retun -> return

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

24

•	 snippit -> snippet
•	 tesnet -> testnet
•	 Cacluated -> Calculated
•	 contibute -> contribute
•	 contrac -> contract
•	 succesful -> successful
•	 Blook -> Block
•	 bytess -> bytes
•	 agains -> against
•	 sucess -> success
•	 sorittion -> sortition
•	 wnated_tenures -> wanted_tenures
•	 clobberring -> clobbering
•	 instantiang -> instancing
•	 NakamotoDwonloadStateMachine ->

NakamotoDownloadStateMachine
•	 mantained -> maintained
•	 akamotoDownloaderStateMachine ->

NakamotoDownloaderStateMachine
•	 reqeust -> request
•	 NakamotTenureDownloader -> NakamotoTenureDownloader
•	 tenurein -> tenure
•	 advanceement -> advancement
•	 perserve -> preserve
•	 blcok -> block
•	 HttpReqeust -> HttpRequest
•	 Inavlid -> Invalid
•	 bufferring -> buffering
•	 consturctor -> constructor
•	 Connction -> Connection
•	 mroe -> more
•	 enoding -> ending
•	 loewst -> lowest
•	 target_reward_cyle -> target_reward_cycle
•	 scaning -> scanning
•	 epcoh2x -> epoch2x
•	 epcoh -> epoch
•	 enusre -> ensure
•	 garabage -> garbage
•	 ommitted -> omitted
•	 minimim -> minimum
•	 netwrk -> network
•	 allwed -> allowed
•	 neighors -> neighbors
•	 desigend -> designed
•	 exisitng -> existing
•	 exceeeds -> exceeds
•	 incuring -> incurring
•	 neigbors -> neighbors

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

25

•	 reesolution -> resolution
•	 converation -> conversation
•	 messsage -> message
•	 maximially -> maximally
•	 existant -> existent
•	 malforemd -> malformed
•	 thestart -> the start
•	 inventroy -> inventory
•	 witih -> with
•	 rerog -> reorg
•	 recieved -> received
•	 local_adddr -> local_addr
•	 intution -> intuition
•	 messaege -> message
•	 deliberatly -> deliberately
•	 conencted -> connected
•	 converation -> conversation
•	 failrue -> failure
•	 Aleady -> Already
•	 forwraded -> forwarded
•	 previosuly -> previously
•	 beyind -> beyond
•	 succesfully -> successfully
•	 Burnchian -> Burnchain
•	 transacctions -> transactions
•	 stakcs -> stacks
•	 sortititon -> sortition
•	 election_sortiton -> election_sortition
•	 recipent -> recipient
•	 preceeds -> precedes
•	 becase -> because
•	 inplement -> implement
•	 StackerDBChnnel -> StackerDBChannel
•	 Cointer -> Counter
•	 Implmentation -> Implementation
•	 Sychronously -> Synchronously
•	 threeads -> threads
•	 earliersiblings -> earlier siblings
•	 restoroe -> restore
•	 canoincal -> canonical
•	 immutible -> immutable
•	 coordiantor -> coordinator
•	 synchronise -> synchronize
•	 sor/tition -> sortition
•	 actualy -> actually
•	 proces -> process

Resolve all indicated typos.

Recommendation

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

26

[QA-04] Misleading Warning Message When
Submitting Proposal Response to .signers
Fails

If an error occurs when broadcasting a block response to the
Stacks node, an incorrect warning message is logged:

At this point, the response could be either
or				 . However, the warning message
implies that the failed response submission is a rejection, which is
misleading.

Update the warning message as follows:

Description

Recommendation

BlockResponse::accepted()

BlockResponse::rejected()

PR: 4807

Err(e) => {

warn!(“{self}: Failed to send block rejection to stacker-db: {e:?}”,);

}

crate::monitoring::increment_block_responses_sent(accepted);

}

Err(e) => {

- 	 warn!

- (“{self}: Failed to send block rejection to stacker-db: {e:?}”,);

+ warn!

+ (“{self}: Failed to send block response to stacker-db: {e:?}”,);

}

}

self.signer_db

https://github.com/stacks-network/stacks-core/pull/4807/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

27

[QA-05] Inconsistent RESTful URI Design in

The				 defines the static URI path
	 , which includes the verb “upload.” This design
is inconsistent with RESTful principles that emphasize using URIs
to represent resources (nouns), while actions (verbs) are conveyed
via HTTP methods (such as	 ,	 ,	 ,). Including
verbs in URIs makes the API harder to maintain and reduces clarity
by mixing the action with the resource representation.

Additionally, this design is inconsistent with the
handler, which follows a RESTful URI pattern:

To achieve consistency and adhere to RESTful design principles, the
URI			 should be refactored to remove the verb.
For example, change the URI to		 and rely on the HTTP
method (in this case) to indicate the “upload” action. This
would align the design with the existing		 , where
the resource () is clearly represented by the URI, and
actions are performed based on the HTTP method.

Additionally, consider removing the trailing slash from the URL as
this also goes against good RESTful API design practices.

Description

Recommendation

PR: 4902

GET /v3/blocks/{blockId}

RPCPostBlockRequestHandler

RPCPostBlockRequestHandler

/v3/blocks/upload/

GET POST

POST

PUT DELETE

getblock_v3.rs

/v3/blocks/upload/

getblock_v3.rs

block_id

/v3/blocks

https://github.com/stacks-network/stacks-core/pull/4902/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

28

[QA-06] Misleading rustdoc for

The rustdoc of the				 is misleading. It
states:

However, the			 function does not return a		
but		 instead. The condition that is checked is if
		 returns		 , in which case the
processing stops.

Update the rustdoc as follows:

Description

Recommendation

PR: 4788

/// This is the main loop body for the signer. It continuously receives

// events from

/// `event_recv`, polling for up to `self.get_event_timeout

//()` units of time. Once it has

/// polled for events, they are fed into `run_one_pass

//()`. This continues until either

- /// `run_one_pass

- ()` returns `false`, or the event receiver hangs up. At this point, this

+ /// `run_one_pass()` returns `Some

+ (final_state)`, or the event receiver hangs up. At this point, this

/// method calls the `event_stop_signaler.send

//()` to terminate the receiver.

///

/// This would run in a separate thread from the event receiver.

SignerRunLoop#main_loop()

SignerRunLoop#main_loop()

run_one_pass() bool

Option<R>

run_one_pass() Some(final_state)

Once it has polled for events, they are fed into run_one_pass().

This continues until either run_one_pass() returns false, or the

event receiver hangs up.

https://github.com/stacks-network/stacks-core/pull/4788/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

29

[QA-07] Misleading Implementation for

The			 implementation is currently left
empty:

The Rust documentation for the function suggests that it should
refresh the next signer data from the provided configuration data.
However, the function does not perform this action.

Implement the				 function to ensure it
updates the signer data as described.

Description

Recommendation

PR: 4788

/// Refresh the next signer data from the given configuration data

fn update_signer(&mut self, _new_signer_config: &SignerConfig) {

// do nothing

}

Signer#updateSigner()

Signer#updateSigner()

Signer#updateSigner()

https://github.com/stacks-network/stacks-core/pull/4788/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

30

[QA-08] The
StackerDB#send_message_bytes_with_retry()
implementation could be simplified

The							
implementation contains the following code:

It could be simplified for better readability and conciseness as
follows:

Simplify the implementation as shown below:

Description

Recommendation

PR: 4788

let mut slot_version = if let Some(versions) = self.slot_versions.get_mut

(msg_id) {

if let Some(version) = versions.get(&slot_id) {

*version

} else {

versions.insert(slot_id, 0);

1 //@audit Why do we insert `0` but return `1`?

}

} else {

let mut versions = HashMap::new();

versions.insert(slot_id, 0);

self.slot_versions.insert(*msg_id, versions);

1

};

) -> Result<StackerDBChunkAckData, ClientError> {

let slot_id = self.signer_slot_id;

loop {

- 	 let mut slot_version = if let Some

- (versions) = self.slot_versions.get_mut(msg_id) {

- 		 if let Some(version) = versions.get(&slot_id) {

- 		 *version

-		 } else {

- 		 versions.insert(slot_id, 0);

- 		 1

- 		 }

- 	 } else {

- 		 let mut versions = HashMap::new();

- 		 versions.insert(slot_id, 0);

- 		 self.slot_versions.insert(*msg_id, versions);

- 		 1

-	 };

+ 	 let slot_version = self.slot_versions

+ 		 .entry(*msg_id)

+ 		 .or_insert_with(HashMap::new)

+ 		 .entry(slot_id)

+ 		 .or_insert(1);

	 let mut chunk = StackerDBChunkData::new

	 (slot_id.0, slot_version, message_bytes.clone());

	 chunk.sign(&self.stacks_private_key)?;

let slot_version = self.slot_versions

	 .entry(*msg_id)

	 .or_insert_with(HashMap::new)

	 .entry(slot_id)

	 .or_insert(1);	

StackerDB#send_message_bytes_with_retry()

https://github.com/stacks-network/stacks-core/pull/4788/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

31

[QA-09] BACKOFF_MAX_INTERVAL should
not exceed BACKOFF_MAX_ELAPSED

The		 client uses a backoff timer to delay retry
attempts in					 . However, the
backoff timer is configured such that the maximum interval (
) exceeds the maximum elapsed time (). As a
result, the delay can never reach the maximum interval since the
timer will return	 once the 5-second maximum elapsed time
is reached.

Revisit the configuration for the backoff timer in the
		 client.

Description

Recommendation

PR: 4788

stacks-signer

stacks-signer

retry_with_exponential_backoff()

16384 ms 5 sec

None

https://github.com/stacks-network/stacks-core/pull/4788/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

32

[QA-10] Improve		 and
			 Variable Naming

Within the 					 function,
the 		 variable represents a boolean indicating if the
block corresponds to a new tenure, and the
variable represents if the current tenure was extended.

Both variables can have better names to improve readability.

Rename	 to		 and	
to			 .

Description

Recommendation

PR: 4827

new_tenure

new_tenure is_new_tenure tenure_extend

is_tenure_extension

tenure_extend

NakamotoChainState::append_block

new_tenure

tenure_extended

https://github.com/stacks-network/stacks-core/pull/4827/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

33

[QA-11] Sign Coordinator v0 Logging
Discrepancies

The logging implemented in the
function is, in some instances, misleading or could be improved:

1.	 If the block sighash does not match the response hash, a
warning is shown indicating that an error will be returned.
However, execution continues, and the signature is ignored.
Either change the logging message or return an error, as done
in the v1 implementation.

2.	 When failing to get the signer public key, an 			
						 error is returned,
but no error message is logged. Consider logging an error
message. Similarly, log an error message when the signer
entry is not found.

3.	 The current implementation does not log information
about the current signing block on code paths. Log index
information about the current block being signed, such as its
block hash, at the beginning or end of the function.

Implement the recommended changes.

Description

Recommendation

PR: 4807

SignCoordinator::begin_sign_v0

NakamotoNodeError::SignerSignatureError

https://github.com/stacks-network/stacks-core/blob/4c35571c4cabac9889bf7c9b358d31e0d484380e/testnet/stacks-node/src/nakamoto_node/sign_coordinator.rs#L718-L724
https://github.com/stacks-network/stacks-core/blob/4c35571c4cabac9889bf7c9b358d31e0d484380e/testnet/stacks-node/src/nakamoto_node/sign_coordinator.rs#L548-L550
https://github.com/stacks-network/stacks-core/blob/4c35571c4cabac9889bf7c9b358d31e0d484380e/testnet/stacks-node/src/nakamoto_node/sign_coordinator.rs#L734-L738
https://github.com/stacks-network/stacks-core/blob/4c35571c4cabac9889bf7c9b358d31e0d484380e/testnet/stacks-node/src/nakamoto_node/sign_coordinator.rs#L727-L731
https://github.com/stacks-network/stacks-core/blob/4c35571c4cabac9889bf7c9b358d31e0d484380e/testnet/stacks-node/src/nakamoto_node/sign_coordinator.rs#L727-L731
https://github.com/stacks-network/stacks-core/pull/4807/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

34

[QA-12] Wrapping versus Saturating Reward
Cycle Inconsistencies

Throughout the codebase, when working with a reward cycle,
an increment is usually performed. However, this increment is
handled differently with regards to wrapping or saturating the
overflow values.

In some cases, the logic is to wrap the reward cycle, meaning if it
reaches the maximum		 value, it starts from 0. Examples of
this can be found in					 and
						 :

In other parts of the codebase, the logic is to saturate the reward
cycle. An example can be found in				 :

Reaching the maximum	 value for the reward cycle
variable is an extreme corner case that requires careful
consideration in theory. While it is unlikely to occur in practice, if it
does, the behavior of the reward cycle variable (and other similar
ones) should be consistent throughout the codebase.

Change all instances of		 to			 to
avoid reusing previous reward cycles in the extreme case that the
value overflows.

Description

Recommendation

PR: 4877

uint64

uint64

wrapping_add saturating_add

stacks-signer\\src\\v1\\signer.rs

stacks-signer\\src\\runloop.rs

stacks-signer\\src\\v1\\stackerdb_manager.rs

let next_reward_cycle = self.reward_cycle.wrapping_add(1);

// ... code ...

MessageSlotID::Transactions.stacker_db_contract

(config.mainnet, config.reward_cycle.wrapping_add(1)),

MessageSlotID::Transactions.stacker_db_contract

(is_mainnet, reward_cycle.wrapping_add(1)),

self.refresh_signer_config(current_reward_cycle.saturating_add(1));

https://github.com/stacks-network/stacks-core/pull/4807/files
https://github.com/stacks-network/stacks-core/blob/da08ad653cc4e6329d3584b28c8ad479240b6c6d/stacks-signer/src/runloop.rs#L299

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

35

[QA-13] Move 			 Configuration to

Within the	 component, when relaying epoch3 blocks,
the			 function has a		
configuration flag that relays epoch3 blocks even if already
known.

The			 function is currently only called with
the flag set to		 :

Having the		 flag directly hardcoded makes code
alterations more difficult, as developers are already expecting
flags to be present in the connection options.

To improve system flexibility when configuring this option and to
adhere to the single source of truth principle, move the
	 configuration to			 .

Description

Recommendation

PR: 4877

Relayer

false

relay_epoch3_blocks

relay_epoch3_blocks

force_send

force_send ConnectionOptions

force_send

self.relay_epoch3_blocks

 (local_peer, sortdb, chainstate, accepted_blocks, false);

force_send

ConnectionOptions

https://github.com/stacks-network/stacks-core/blob/eee57331231a515744b8730385df66f94a1f829a/stackslib/src/net/relay.rs#L2540-L2551
https://github.com/stacks-network/stacks-core/blob/eee57331231a515744b8730385df66f94a1f829a/stackslib/src/net/relay.rs#L2540-L2551
https://github.com/stacks-network/stacks-core/pull/4807/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

36

[QA-14] Improve NET Relayer Logging

Within the					 component,
there are several improvements that can be made to logging.

•	 In the				 	 function, the case
where a sortition is not known is not logged, only silently
skipped. Add an 	 or		 logging message.

•	 Consider changing		 logging to either 	 or 	
	 logging level in the following cases:

◊	 When forwarding nakamoto blocks.
◊	 When discarding blocks because of staleness.

•	 Consider changing the	 level to	 level when
banning neighbor nodes, as it can be considered relevant
information regardless of the debug state.

•	 Consider changing the logging level from	 to	
when disregarding invalid Nakamoto blocks due to missing
sortition.

Implement the recommended changes.

Description

Recommendation

PR: 4877

stackslib\src\net\relay.rs::Relayer

validate_nakamoto_blocks_push

info

info

info

info

test_debug

debug

debug

debug

warn

https://github.com/stacks-network/stacks-core/blob/eee57331231a515744b8730385df66f94a1f829a/stackslib/src/net/relay.rs#L573-L576
https://github.com/stacks-network/stacks-core/blob/eee57331231a515744b8730385df66f94a1f829a/stackslib/src/net/relay.rs#L573-L576
https://github.com/stacks-network/stacks-core/blob/eee57331231a515744b8730385df66f94a1f829a/stackslib/src/net/relay.rs#L2567-L2572
https://github.com/stacks-network/stacks-core/blob/eee57331231a515744b8730385df66f94a1f829a/stackslib/src/net/relay.rs#L2533-L2537
https://github.com/stacks-network/stacks-core/blob/eee57331231a515744b8730385df66f94a1f829a/stackslib/src/net/relay.rs#L586-L591
https://github.com/stacks-network/stacks-core/blob/eee57331231a515744b8730385df66f94a1f829a/stackslib/src/net/relay.rs#L586-L591
https://github.com/stacks-network/stacks-core/pull/4807/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

37

[QA-15] NakamotoBlocksData Consensus
Deserialization Can Be Optimized

When a				 data structure is deserialized, a
check is implemented to ensure that duplicate blocks are not
allowed.

As the check is currently implemented, it first verifies if a block ID
has already been processed, and if not, calls the
function.

A simple and effective optimization can be achieved by directly
verifying the return value of the	 call, as it returns
if the element was not inserted. If	 is returned, halt
execution.

By doing this, the		 operation can be completely
removed.

The same type of optimization can be applied in
							 .

Implement the mentioned optimization. Example change:

Description

Recommendation

PR: 4877

NakamotoBlocksData

Hash::insert

Hash::contains

stackslib/src/net/mod.rs::consume_nakamoto_blocks

insert false

false

// only valid if there are no dups

	 let mut present = HashSet::new();

	 for block in blocks.iter() {

- 	 if present.contains(&block.block_id()) {

+	 if !present.insert(block.block_id()) {

		 // no dups allowed

		 return Err(codec_error::DeserializeError(

		 “Invalid NakamotoBlocksData: duplicate block”.to_string(),

));

	 }

-

-	 present.insert(block.block_id());

}

Ok(NakamotoBlocksData { blocks })

https://github.com/stacks-network/stacks-core/pull/4807/files
https://github.com/stacks-network/stacks-core/blob/eee57331231a515744b8730385df66f94a1f829a/stackslib/src/net/mod.rs#L1671-L1675

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

38

[QA-16] Use Constants Instead of Magic
Numbers in

Using constants instead of hardcoding values generally improves
code readability. In the
function, if there is an error when collecting the response from the
node, a			 error is returned. However, the error
code	 is hardcoded.

Either import and use					 or
define a local constant for better code clarity.

Description

Recommendation

PR: 4902

RPCRequestHandler::try_handle_request

http::StatusCode::BAD_REQUEST

400 Bad Request

400

RPCRequestHandler

https://github.com/stacks-network/stacks-core/pull/4902/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

39

[QA-17] Improve Logging in Nakamoto
Chainstate Module Code

Within the context of PR 4930, there are several locations where
the debug logging can be improved:

1.	 The log message for rejecting the storage of a duplicate block
due to signer weight difference mentions the case that		
					 . However, this execution
flow is reached even when the signing power is equal. Change
the message to						 .

2.	 When retrieving a block header by coinbase height via the 	
					 function, there is no
warning message when exiting the function without having
found the header height. Add a warning message in this case.

Implement the mentioned changes.

Description

Recommendation

PR: 4902

since it has less signing power

get_header_by_coinbase_height

since it has less or equal signing power

https://github.com/stacks-network/stacks-core/blob/cf6b8fa4bb8382978c3a2751c16fa39486b74080/stackslib/src/chainstate/nakamoto/mod.rs#L2229
https://github.com/stacks-network/stacks-core/blob/cf6b8fa4bb8382978c3a2751c16fa39486b74080/stackslib/src/chainstate/nakamoto/mod.rs#L2392-L2393
https://github.com/stacks-network/stacks-core/blob/cf6b8fa4bb8382978c3a2751c16fa39486b74080/stackslib/src/chainstate/nakamoto/mod.rs#L2392-L2393
https://github.com/stacks-network/stacks-core/pull/4930/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

40

[QA-18]
NakamotoStagingBlocksConnRef::has_children is
never used

In the			 source file, the
		 function is never used, either internally or
externally.

Consider reusing it in an appropriate context or removing it.

Description

Recommendation

PR: 4930

staging_blocks.rs NakamotoStagingBlocksConnRef:

:has_children

https://github.com/stacks-network/stacks-core/pull/4930/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

41

[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages

Within the					 function, there
are two distinct operations that share the same error message
in case of issues. Both when determining the coinbase height
from the POX calculation () and when
retrieving the active reward set information (),
the same error message is used:

When retrieving the				 value, change the
error message to a more appropriate one, such as:

					 .

This will cause confusion if one of the two cases ever appears.

Description

Recommendation

PR: 4879

NakamotoBlockBuilder::load_tenure_info

“Cannot process Nakamoto block: could not retrieve coinbase POX

coinbase POX height of the elected block”

coinbase_height_of_calc

coinbase_height_of_calc

active_reward_set

).map_err(|e| {

warn!(

	 “Cannot process Nakamoto block: could not load reward set that elected the blo

	 “err” => ?e,

);

Error::NoSuchBlockError

})?;

https://github.com/stacks-network/stacks-core/pull/4879/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

42

[QA-20]
mod::NakamotoChainState::check_pox_bitvector
can be simplified

The					 function initially
checks if a tenure block commit has an empty treatment vector.
If it does not, the function continues with its logic; otherwise, it
exits.

Currently, this is implemented as:

Apply the indicated recommendation.

Since there is a lot of code within the		 branch, the
execution can be short-circuited by negating the logic. This
reduces code clutter and simplifies the statement:

Description

Recommendation

PR: 4879

NakamotoChainState::check_pox_bitvector

if-true

if

if !tenure_block_commit.treatment.is_empty() {

 // ... a lot of code ...

}

Ok(())

if tenure_block_commit.treatment.is_empty() {

 Ok(())

}

// ... a lot of code ...

Ok(())

https://github.com/stacks-network/stacks-core/pull/4879/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

43

[QA-21] Use Descriptive Variable Names

Avoid using single-letter variable names to enhance code
readability and quality. This recommendation applies to several
PRs:

•	 In the			 function, the	 variable.

•	 The variable in					 .

•	 Variables named	 in		 and		 .
•	 	 and	 suffixes in relayer.rs#L682.
•	 	 suffix in		 .

Use more descriptive names for the mentioned variables.

Description

4902

4877

4877

Recommendation

PR: 4827

Signer::process_event

RelayPayload RelayerStats

RelayerStats::sample_neighbors

b

w

h

ch bh

pkx relayer.rs#L700

https://github.com/stacks-network/stacks-core/pull/4827/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

44

[QA-22] Unused Imports

The codebase currently contains numerous unused imports
across almost all source files. The mentioned occurrences are for
reference and do not cover all instances in the codebase.

Consider removing the unused imports from your codebase to
improve quality and readability.

Additionally, it is recommended to add a lint job to the CI
pipelines to ensure that no unused imports are introduced with
each new PR.

The code line references are from the last commit of PR4877.
However, this issue is present across all branches/PRs of the
codebase.

Description

Recommendation

PR: 4788

https://github.com/stacks-network/stacks-core/pull/4788/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

45

[QA-23] Inconsistent Ordering of
Match Cases with StacksMessageType
Throughout the Code

Within the codebase, there are slight differences in the order in
which some match cases check for various			 s.

For example, in p2p.rs#L1386-L1427, the ordering is as follows:

Block → Microblock → Nakamoto block → Transaction

From a logical standpoint, this is correct (going from the largest
entity downwards).

However, in src/net/mod.rs#L1590-L1636, the ordering is
different:

Block → Microblock → Transaction → Nakamoto block

In this case, the ordering of the match cases is not logically
sorted, which slightly increases the difficulty in reasoning about
this code snippet.

Reorder the cases of the match block in question in the following
way:

Description

Recommendation

PR: 4877

StacksMessageType

https://github.com/stacks-network/stacks-core/blob/eee57331231a515744b8730385df66f94a1f829a/stackslib/src/net/p2p.rs#L1386-L1427
https://github.com/stacks-network/stacks-core/blob/eee57331231a515744b8730385df66f94a1f829a/stackslib/src/net/p2p.rs#L1386-L1427
https://github.com/stacks-network/stacks-core/pull/4877/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

46

tacksMessageType::Microblocks(mblock_data) => {

 if let Some(mblocks_msgs) = self.pushed_microblocks.get_

mut(&neighbor_key) {

 mblocks_msgs.push((message.relayers, mblock_data));

 } else {

 self.pushed_microblocks.insert(

 neighbor_key.clone(),

 vec![(message.relayers, mblock_data)],

);

 }

 }

+ StacksMessageType::NakamotoBlocks(block_data) => {

+ if let Some(nakamoto_blocks_msgs) =

+ self.pushed_nakamoto_blocks.get_mut(&neighbor_key)

+ {

+ nakamoto_blocks_msgs.push((message.relayers, block_data));

+ } else {

+ self.pushed_nakamoto_blocks

+ .insert(neighbor_key.clone(), vec![(message.relayers,

block_data)]);

+ }

+ }

 StacksMessageType::Transaction(tx_data) => {

 if let Some(tx_msgs) = self.pushed_transactions.get_mut(&neighbor_

key) {

 tx_msgs.push((message.relayers, tx_data));

 } else {

 self.pushed_transactions

 .insert(neighbor_key.clone(), vec![(message.relayers, tx_

data)]);

 }

 }

- StacksMessageType::NakamotoBlocks(block_data) => {

- if let Some(nakamoto_blocks_msgs) =

- self.pushed_nakamoto_blocks.get_mut(&neighbor_key)

- {

- nakamoto_blocks_msgs.push((message.relayers, block_data));

- } else {

- self.pushed_nakamoto_blocks

- .insert(neighbor_key.clone(), vec![(message.relayers,

block_data)]);

- }

- }

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

47

[QA-24] Incorrect Sortition DB Schema 4
SQL Commands

The			 from
		 contains a typo when creating the
		 table:

Resolve the typo. It is also recommended to always use the same
letter case when referencing identifiers since some databases are
case-sensitive. The 					 has an
uppercase 	 while the column ID is lowercase			 .

The						 command is invalid
because of a typo in	 , which should be	 .

Description

Recommendation

PR: 4879

stackslib\\src\\chainstate\\

ast_rule_id INTEGER PRIMAR KEY NOT NULL,

PRIMARY KEY(txid, burn_header_Hash)

burn_header_Hash)

PRIMAR PRIMARY

Hash

burn\\db\\sortdb.rs

SORTITION_DB_SCHEMA_4

ast_rule_heights

const SORTITION_DB_SCHEMA_4: &’static [&’static str] = &[

r#”

CREATE TABLE delegate_stx (

txid TEXT NOT NULL,

vtxindex INTEGER NOT NULL,

block_height INTEGER NOT NULL,

burn_header_hash TEXT NOT NULL,

sender_addr TEXT NOT NULL,

delegate_to TEXT NOT NULL,

reward_addr TEXT NOT NULL,

delegated_ustx TEXT NOT NULL,

until_burn_height INTEGER,

PRIMARY KEY(txid, burn_header_Hash)

);”#,

r#”

CREATE TABLE ast_rule_heights (

ast_rule_id INTEGER PRIMARY KEY NOT NULL,

block_height INTEGER NOT NULL

);”#,

];

https://github.com/stacks-network/stacks-core/pull/4879/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

48

[QA-25] Improve Nakamoto Node Miner
Thread Debug Logging

There are a few improvements that can be made to the 		
			 debug logging implementation as of the
latest code changes:

1.	 In the	 function, also debug print the			
					 , which was added in 	
	 .

2.	 In the			 function, split the 		
macro across multiple lines for better code readability.

Implement the mentioned changes.

Description

Recommendation

PR: 4827

miners::BlockMinerThread

make_tenure_start_info debug!

self.burn_election_block.consensus_hash

run_miner

PR #4827

https://github.com/stacks-network/stacks-core/pull/4827/files

Security Review

Nakamoto
Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Nakamoto Upgrade
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Medium Findings

[M-01] Block Bitvec Header Incorrectly Validated
Against Miner Block Commit Punishments
[M-02] Insufficient Error Handling When Calling
insert_burn_block
[M-03] Sortition DB Instantiation Creates Wrong
Schema Version

8.2. Low Findings
[L-01] Missing Error Handling in Case of Failed Block
Push
[L-02] Failing to Retrieve Nakamoto Staging Blocks
Version Will Wipe Entire DB
[L-03] Block Timestamp Can Be 15 Seconds into
the Future
[L-04] Miner signature hash does not contain POX
treatment bitvec
[L-05] Incorrect Tenure Chainstate Schema Migra-
tion from Version 3 to Version 4

8.3. QA Findings
[QA-01] The time complexity of
NakamotoChainState::check_pox_bitvector could be
reduced from O(mn) to O(n)
[QA-02] Block PoX Bitvec Header Lacks Edge Vali-
dations Against Miner Block Commit Punishments
[QA-03] Typographical Errors
[QA-04] Misleading Warning Message When Sub-
mitting Proposal Response to .signers Fails
[QA-05] Inconsistent RESTful URI Design in
RPCPostBlockRequestHandler
[QA-06] Misleading rustdoc for SignerRunLoop#-
main_loop()
[QA-07] Missing Implementation for Signer#up-
dateSigner()
[QA-08] The StackerDB#send_message_bytes_
with_retry() implementation could be simplified
[QA-09] BACKOFF_MAX_INTERV AL should not
exceed BACKOFF_MAX_ELAPSED
[QA-10] Improve new_tenure and tenure_extended
Variable Naming
[QA-11] Sign Coordinator v0 Logging Discrepancies
[QA-12] Wrapping versus Saturating Reward Cycle
Inconsistencies
[QA-13] Move force_send Configuration to Connec-
tionOptions
[QA-14] Improve NET Relayer Logging
[QA-15] NakamotoBlocksData Consensus Deserial-
ization Can Be Optimized
[QA-16] Use Constants Instead of Magic Numbers in
RPCRequestHandler
[QA-17] Improve Logging in Nakamoto Chainstate
Module Code
[QA-18] NakamotoStagingBlocksConnRef::has_chil-
dren is never used
[QA-19] Indistinguishable
NakamotoBlockBuilder::load_tenure_info Error
Messages
[QA-20] mod::NakamotoChainState::check_pox_bit-
vector can be simplified
[QA-21] Use Descriptive Variable Names
[QA-22] Unused Imports
[QA-23] Inconsistent Ordering of Match Cases with
StacksMessageType Throughout the Code
[QA-24] Incorrect Sortition DB Schema 4 SQL
Commands
[QA-25] Improve Nakamoto Node Miner Thread
Debug Logging
[QA-26] Continue Tenure Directive Logging
Ambiguities

2
3
4
4
4
4
5
5
6
7
10
10
10

12

13

14
14

15

16

17

18

19
19

20

21
26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42

43
44
45

47

48

49

49

[QA-26] Continue Tenure Directive Logging
Ambiguities

A tenure continuation directive that fails because the previous
tenure could not be stopped is incorrectly considered a
successful tenure continuation. This issue arises because the
			 function, which is called from the
			 function, incorrectly returns an
response instead of an error when it fails to stop the previous
tenure.

Subsequently, in the				 function, the
debug message
is logged instead of an error message.

The same issue appears in the				 function
if starting a new tenure fails. An error message is displayed,
followed by an	 response.

In each case, there will be error messages from within the 		
		 function, followed by a success message from the	
		 function. These ambiguous logging messages
increase debugging time.

There is also a slight redundancy in the code, as the error arm in
the				 response returns a	 boolean.
This is redundant because the return value of the parent
operation is not caught, since			 always returns
true.

Modify the error messages to better describe the execution flow.
Returning an error in both mentioned instances would also clarify
the code logic. Additionally, remove the return from the error
branch in		 .

Description

Recommendation

PR: 4827

relayer::continue_tenure

relayer::continue_tenure

relayer::continue_tenure

continue_tenure

continue_tenure

handle_tenure

false

match

Ok

Ok

relayer::handle_sortition

handle_sortition

relayer::handle_sortition

(“Relayer: successfully handled continue tenure.”);

if let Err(e) = self.stop_tenure() {

error!(“Relayer: Failed to stop tenure: {:?}”, e);

return Ok(());

}

// ... code ...

Err(e) => {

error!(“Relayer: Failed to start new tenure: {:?}”, e);

}

Ok(())

https://github.com/stacks-network/stacks-core/pull/4827/files

