
Hermetica Vaults Security Review

Conducted by:
Kristian Apostolov, Alin Barbatei (ABA),
Silverologist

January 27th, 2026

Contents
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica Vaults
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. High Findings
[H-01] Incorrect Performance Fee Calculation Leads To
Unaccounted Rewards
[H-02] Reward Profit Handling Is Incorrect
[H-03] Excess Loss Handling Is Incorrect
[H-04] Covered Loss Handling Is Incorrect

8.2. Medium Findings
[M-01] Vault Withdrawal Share Rounding Favors Users
Over the Protocol
[M-02] Malicious Trader Can Drain Removable Zest
Collateral
[M-03] Premature Share Price Snapshot Leads to
Unbacked Pending Claims
[M-04] Vault Cannot Be Emptied After Share Price
Divergence
[M-05] Updated Management And Performance Fees
Are Applied Retroactively
[M-06] hBTC Token Is Not SIP-10 Compliant
[M-07] hBTC Public Share Burning Enables a First-
Deposit DoS Attack Variant

1

5

6

6

7

8

8

8

9

10

12

17

17

17

19

21

25

28

28

29

33

36

39

41

43

[M-08] Maximum and Minimum Cap Limitations May
Endanger the Protocol
[M-09] Tokens With tx-sender-Based Authorization
Are Not Fully Supported
[M-10] STX Integration Issues Due to Clarity 4 Security
Constraints

8.3. Low Findings
[L-01] Incomplete Blacklist Flow
[L-02] Missing Reset Mechanism for Custom
Parameters
[L-03] Management Fee Overstated by Using Total
Assets
[L-04] Missing Explicit Validation for is-express
Parameters
[L-05] Vault withdraw-many Functionality Is Brittle
[L-06] hBTC Token Name Should Not Be Changeable
[L-07] Reward Distribution Should Not Be Allowed
After the Vault Has Been Emptied
[L-08] Positive Slippage Remains in the Hermetica
Interface Contract After a Mint
[L-09] Race Condition During Fund Transfers Due to
Rewarder Role Ambiguity
[L-10] Admin Should Not Be Able To Change Price
Staleness Threshold
[L-11] Exit Fee Transfers Should Not Be Bound To Vault
Status
[L-12] Missing Transfer Authorization Check in
Reserve Fund Transfer
[L-13] Max Slippage Can Be Set for Arbitrary Assets
[L-14] Security Enhancements in Case of Ownership
Compromise
[L-15] Unnecessary Token Allowance on Zest
Operations With No Outflows
[L-16] Repaying Zest Debt May Leave Dust in the
Interface

2

46

50

52

55

55

56

57

58

59

61

62

64

66

68

69

70

71

73

75

77

78

[L-17] Loose Token Allowances on Zest Market
Interface Calls

8.4. QA Findings
[QA-01] Unnecessary External Call for is-standard
Verification
[QA-02] Current Owner Can Claim Ownership
Multiple Times
[QA-03] Current Owner Can Request Next Ownership
to Himself
[QA-04] Incorrect Reuse of ERR_NOT_OWNER Code
When Claiming Ownership
[QA-05] Incorrect Event Action Name for request-
new-admin Function
[QA-06] Optimize Double Timestamp Retrieval
[QA-07] Hardcode Constants Instead of Computing at
Runtime
[QA-08] Zest Interface Contract Can Be Slightly
Improved
[QA-09] Excessive Price Feed Updates in Trading
Interface
[QA-10] Trading Interface: Ambiguous Function
Naming Convention
[QA-11] Trading Interface Can Be Optimized
[QA-12] Vault Deposit Cap Consideration
[QA-13] Management Fee Max Amount
Implementation – Documentation Discrepancy
[QA-14] Vault Contract Can Be Slightly Improved
[QA-15] First Depositor Inflation Attack
Considerations
[QA-16] Add Vault Action Preview Functions
[QA-17] Codebase Print Statements Improvements
[QA-18] Miscellaneous Codebase Improvements
[QA-19] Hermetica Interface Mint Asset Transfer
Restriction Can Be Improved
[QA-20] Use the Recipient Feature of the Zest Market
Interface

3

80

80

81

82

83

84

85

86

88

90

92

94

96

97

99

101

103

104

106

108

110

[QA-21] Use Zest Market Bundle Operations

4

111

1. About Clarity Alliance
Clarity	Alliance is a team of expert whitehat hackers specialising in securing
protocols on Stacks.

They have disclosed vulnerabilities that have saved millions in live TVL and
conducted thorough reviews for some of the largest projects across the Stacks
ecosystem.

Learn more about Clarity Alliance at clarityalliance.org.

5

https://clarityalliance.org/

2. Disclaimer
This report is not, and should not be considered, an endorsement or
disapproval of any project, team, product, or asset, nor does it reflect on their
economics, value, business model, or legal compliance. It does not provide any
warranty regarding the absolute bug-free nature or functionality of the
analyzed technology.

Nothing in this report should be used to make investment or participation
decisions. It does not constitute investment advice. Instead, it reflects an
extensive assessment process intended to help clients improve code quality
and reduce the inherent risks associated with cryptographic tokens and
blockchain systems.

Blockchain technology presents ongoing and significant risk, and each
company or individual remains responsible for their own due diligence and
security posture. Clarity Alliance aims to reduce attack vectors and
technological uncertainty but does not guarantee the security or performance
of any system we review.

All assessment services are subject to dependencies and active development.
Your access to and use of any services, reports, or materials is at your sole risk
on an as-is and as-available basis.

Cryptographic tokens are emergent technologies with high technical
uncertainty, and assessment results may include false positives, false negatives,
or other unpredictable outcomes. Smart contracts may depend on multiple
external parties, remain vulnerable to internal or external exploitation, and
may carry elevated risks if owner privileges remain active. Accordingly, Clarity
Alliance does not guarantee the explicit security of any audited smart contract,
regardless of the reported verdict.

3. Introduction
A time-boxed security review of the Hermetica hBTC protocol, where Clarity
Alliance reviewed the scope and provided insights on improving the protocol.

6

4. About Hermetica Vaults
What are Hermetica Vaults?

Hermetica Vaults are Stacks (Clarity) yield vault smart contracts that
implement ERC-4626-style share mint/redeem, publish periodic (daily) NAV
updates into a liquid staking token (LST), and execute yield strategies via
integrations with external on-chain protocols.

hBTC is the reference implementation of the Hermetica Vault framework: a
BTC-denominated "BTC-on-BTC" vault that deploys deposited BTC across
integrated DeFi venues to generate yield while tracking assets and liabilities
on-chain.

Deposited BTC is programmatically allocated to strategies that produce BTC-
denominated returns. The core strategy borrows stablecoin liquidity against
BTC collateral (e.g., borrowing USDh on Zest), deploys the borrowed assets into
yield-bearing positions (e.g., staking USDh via Hermetica), and periodically
realizes strategy P&L, converting net proceeds back into BTC for accrual to
vault share value.

The core design principles are:

Self-custodial: Assets move only via protocol smart contracts; privileged
changes are gated by governance and enforced timelocks.

Permissionless redemption: Any share holder can redeem according to
contract rules, including withdrawal back to native Bitcoin.

Full transparency: Positions, flows, and accounting are on-chain and
independently verifiable.

Automated risk controls: Pre-defined leverage, delta, and interest spread
controls are enforced programmatically.

7

5. Risk Classification

Severity
Impact:
High

Impact:
Medium

Impact:
Low

Likelihood: High Critical High Medium

Likelihood:
Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or
significantly harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value)
or a core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the
protocol's functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-
chain conditions, and the cost of the attack is relatively low compared to the
amount of funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant
stake by the attacker with little or no incentive.

8

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

9

6. Security Assessment Summary

Scope
The scope of this security assessment covered the Hermetica hBTC contracts in
the Hermetica repository:

contracts/hbtc/protocol/controller-v1.clar

contracts/hbtc/protocol/fee-collector-v1.clar

contracts/hbtc/protocol/hq-hbtc-v1.clar

contracts/hbtc/protocol/reserve-fund-v1.clar

contracts/hbtc/protocol/reserve-v1.clar

contracts/hbtc/protocol/state-v1.clar

contracts/hbtc/protocol/trading-v1.clar

contracts/hbtc/protocol/vault-v1.clar

contracts/hbtc/protocol/interfaces/hermetica-interface-v1.clar

contracts/hbtc/protocol/interfaces/zest-interface-v1.clar

contracts/hbtc/tokens/hbtc-token.clar

Initial Commit Reviewed

43fff97fdecd8c3a2c2fc5b6070967fad4aac28f

Final Commit After Remediations

135b453e1b9c4bc4784640f99cac49f9532d4bff

Subsequent Commits and Pull Requests Reviewed

10

https://github.com/hermetica-fi/hermetica-contracts
https://github.com/hermetica-fi/hermetica-contracts/commit/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f
https://github.com/hermetica-fi/hermetica-contracts/commit/135b453e1b9c4bc4784640f99cac49f9532d4bff

97832bd64273a08b0a6267804b35133b6205d89e

63e463aad9ed27896453f2158e69fea6dca6ef1e

PR#93
PR#91: commit b2e7ad8
PR#128: commit e7bc47b
PR#130
PR#138: commit bf26a83
PR#139: commit 163e9ca
PR#140: commit 5929b0f
PR#143
PR#144
PR#152
PR#153
PR#171

Only the subsequent changes introduced (after the final commit) in the
commits and pull requests listed above were reviewed.

11

https://github.com/hermetica-fi/hermetica-contracts/commit/97832bd64273a08b0a6267804b35133b6205d89e
https://github.com/hermetica-fi/hermetica-contracts/commit/63e463aad9ed27896453f2158e69fea6dca6ef1e
https://github.com/hermetica-fi/hermetica-contracts/pull/93
https://github.com/hermetica-fi/hermetica-contracts/pull/91/commits/b2e7ad827b6145a07316fc9a2cc80edbd81d8bf4
https://github.com/hermetica-fi/hermetica-contracts/pull/128/commits/e7bc47b4abffab2ce3eae895435e2d9cfc2b7de1
https://github.com/hermetica-fi/hermetica-contracts/pull/130
https://github.com/hermetica-fi/hermetica-contracts/pull/138/commits/bf26a838967d9faec874d4953a29b89924af68f8
https://github.com/hermetica-fi/hermetica-contracts/pull/139/commits/163e9ca7c87931ddd64ea429f6e1d0143e9e2d76
https://github.com/hermetica-fi/hermetica-contracts/pull/140/commits/5929b0f9f0b0b27cf1ea9d2a22d7d12a93de3fec
https://github.com/hermetica-fi/hermetica-contracts/pull/143
https://github.com/hermetica-fi/hermetica-contracts/pull/144
https://github.com/hermetica-fi/hermetica-contracts/pull/152
https://github.com/hermetica-fi/hermetica-contracts/pull/153
https://github.com/hermetica-fi/hermetica-contracts/pull/171

7. Executive Summary
Over the course of the security review, Kristian Apostolov, Alin Barbatei (ABA),
Silverologist engaged with - to review Hermetica Vaults. In this period of time a
total of 52 issues were uncovered.

Protocol Summary

Protocol Name Hermetica hBTC

Date January 27th, 2026

Findings Count

Severity Amount

High 4

Medium 10

Low 17

QA 21

Total Findings 52

12

Summary of Findings

ID Title Severity Status

[H-01]
Incorrect Performance Fee
Calculation Leads To
Unaccounted Rewards

High Resolved

[H-02] Reward Profit Handling Is
Incorrect High Resolved

[H-03] Excess Loss Handling Is
Incorrect High Resolved

[H-04] Covered Loss Handling Is
Incorrect High Resolved

[M-01]
Vault Withdrawal Share
Rounding Favors Users Over the
Protocol

Medium Resolved

[M-02] Malicious Trader Can Drain
Removable Zest Collateral Medium Resolved

[M-03]
Premature Share Price Snapshot
Leads to Unbacked Pending
Claims

Medium Resolved

[M-04] Vault Cannot Be Emptied After
Share Price Divergence Medium Resolved

[M-05]
Updated Management And
Performance Fees Are Applied
Retroactively

Medium Resolved

[M-06] hBTC Token Is Not SIP-10
Compliant Medium Resolved

[M-07]
hBTC Public Share Burning
Enables a First-Deposit DoS
Attack Variant

Medium Resolved

13

[M-08]
Maximum and Minimum Cap
Limitations May Endanger the
Protocol

Medium Resolved

[M-09]
Tokens With tx-sender-Based
Authorization Are Not Fully
Supported

Medium Resolved

[M-10] STX Integration Issues Due to
Clarity 4 Security Constraints Medium Resolved

[L-01] Incomplete Blacklist Flow Low Acknowledged

[L-02] Missing Reset Mechanism for
Custom Parameters Low Resolved

[L-03] Management Fee Overstated by
Using Total Assets Low Resolved

[L-04] Missing Explicit Validation for
is-express Parameters Low Resolved

[L-05] Vault withdraw-many
Functionality Is Brittle Low Resolved

[L-06] hBTC Token Name Should Not
Be Changeable Low Partially Resolved

[L-07]
Reward Distribution Should Not
Be Allowed After the Vault Has
Been Emptied

Low Resolved

[L-08]
Positive Slippage Remains in the
Hermetica Interface Contract
After a Mint

Low Resolved

[L-09]
Race Condition During Fund
Transfers Due to Rewarder Role
Ambiguity

Low Resolved

[L-10]
Admin Should Not Be Able To
Change Price Staleness
Threshold

Low Resolved

14

[L-11] Exit Fee Transfers Should Not
Be Bound To Vault Status Low Resolved

[L-12] Missing Transfer Authorization
Check in Reserve Fund Transfer Low Resolved

[L-13] Max Slippage Can Be Set for
Arbitrary Assets Low Resolved

[L-14] Security Enhancements in Case
of Ownership Compromise Low Resolved

[L-15]
Unnecessary Token Allowance
on Zest Operations With No
Outflows

Low Resolved

[L-16] Repaying Zest Debt May Leave
Dust in the Interface Low Resolved

[L-17] Loose Token Allowances on Zest
Market Interface Calls Low Resolved

[QA-01] Unnecessary External Call for is-
standard Verification QA Acknowledged

[QA-02] Current Owner Can Claim
Ownership Multiple Times QA Resolved

[QA-03] Current Owner Can Request
Next Ownership to Himself QA Resolved

[QA-04]
Incorrect Reuse of
ERR_NOT_OWNER Code When
Claiming Ownership

QA Resolved

[QA-05] Incorrect Event Action Name for
request-new-admin Function QA Resolved

[QA-06] Optimize Double Timestamp
Retrieval QA Resolved

[QA-07] Hardcode Constants Instead of
Computing at Runtime QA Resolved

15

[QA-08] Zest Interface Contract Can Be
Slightly Improved QA Resolved

[QA-09] Excessive Price Feed Updates in
Trading Interface QA Resolved

[QA-10] Trading Interface: Ambiguous
Function Naming Convention QA Resolved

[QA-11] Trading Interface Can Be
Optimized QA Resolved

[QA-12] Vault Deposit Cap Consideration QA Resolved

[QA-13]
Management Fee Max Amount
Implementation –
Documentation Discrepancy

QA Resolved

[QA-14] Vault Contract Can Be Slightly
Improved QA Resolved

[QA-15] First Depositor Inflation Attack
Considerations QA Resolved

[QA-16] Add Vault Action Preview
Functions QA Resolved

[QA-17] Codebase Print Statements
Improvements QA Resolved

[QA-18] Miscellaneous Codebase
Improvements QA Resolved

[QA-19]
Hermetica Interface Mint Asset
Transfer Restriction Can Be
Improved

QA Resolved

[QA-20] Use the Recipient Feature of the
Zest Market Interface QA Resolved

[QA-21] Use Zest Market Bundle
Operations QA Resolved

16

8. Findings

8.1. High Findings

[H-01] Incorrect Performance Fee
Calculation Leads To Unaccounted
Rewards

Location:

controller-v1.clar#L36

Description In the current design, rewards are manually synchronized by
the rewarder role calling controller::log-reward . Per the protocol
documentation, this operation is intended to occur once per day.

Reward logging follows one of three execution paths:

handle-profit , when a net profit is achieved
handle-loss-covered , when a loss occurs but can be covered by the
reserve fund
handle-loss-exceeded , when a loss occurs and the reserve fund is
insufficient

Whether the handle-profit branch is selected depends on the is-profit
value:

(perf-fee (if is-positive (/ (* (get perf-fee fees) reward) bps-base) u0))
(mgmt-fee (/ (* (get mgmt-fee fees) total-assets) bps-base pct-base))
(total-fees (+ perf-fee mgmt-fee))
(is-profit (and is-positive (>= reward total-fees)))

However, is-profit can be incorrectly evaluated as false because the
performance fee is calculated on the full reward amount rather than on the

17

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/controller-v1.clar#L36

profit portion (i.e., the amount remaining after the management fee). This
can cause execution to incorrectly enter one of the handle-loss-* branches.

Consider the following scenario:

Logged reward: +100 units
Performance fee: 10% → 10 units
Management fee: 91 units
Total fees: 10 + 91 = 101 → is-profit = false

Here, the reward (100) exceeds the management fee (91) but is less than
the combined total fees (101), so execution reaches the handle-loss-*
branches.

As a result, the remaining 9 units are left unaccounted for, since the loss-
handling branches neither apply fees nor distribute rewards to users.

Recommendation Apply the performance fee only to the portion of the
reward remaining after the management fee is deducted (i.e., profit),
rather than to the full reward amount. This change:

Ensures the correct handle-* branch is selected when reward < total-
fees and reward > mgmt-fee
Prevents users from paying a performance fee on the management-fee
portion
Ensures consistent behavior with loss-handling cases, where
performance fees are not applied
Aligns with the documentation, which states that a “performance fee on
profits” is applied

Example implementation:

- (perf-fee (if is-positive (/ (* (get perf-fee fees) reward) bps-base) u0))
 (mgmt-fee (/ (* (get mgmt-fee fees) total-assets) bps-base pct-base))
+ (reward-after-mgmt-fee (if (>= reward mgmt-fee) (- reward mgmt-fee) u0))
+ (perf-fee (if is-positive (/ (*
+ (get perf-fee fees) reward-after-mgmt-fee) bps-base) u0))
 (total-fees (+ perf-fee mgmt-fee))
 (is-profit (and is-positive (>= reward total-fees)))

18

https://github.com/hermetica-fi/hermetica-contracts-dev/blob/dev/docs/settings.md#maximum-limits-state-contract

[H-02] Reward Profit Handling Is
Incorrect

Location:

controller-v1.clar#L133

Description In the current design, rewards are manually synchronized by
the rewarder role via controller::log-reward . Per the protocol
documentation, this operation is intended to be performed once per day.

When log-reward is called and the reward includes a profit, the handle-
profit function is executed. The system state is updated as follows:

Pending fees = performance fee + management fee
Pending reserve fund = reserve rate applied to the post-fee reward
New reward = reward - pending fees - pending reserve fund

Within state::update-state , this results in:

pending-fees increasing by the newly calculated pending fees
pending-rf increasing by the newly calculated pending reserve fund
total-assets increasing by the new reward amount

A related observation is that net assets (after claims and fees) are used to
determine the share price. The state::get-net-assets function computes
net assets as:

(define-read-only (get-net-assets)
 (- (get-total-assets) (get-pending-claims) (get-pending-fees)
 (get-pending-rf))
)

An issue arises in the current profit-handling flow because the amount
added to total-assets should be the gross reward, not the reward net of
fees and the reserve fund. This is because get-net-assets already subtracts
pending-fees and pending-rf when calculating net assets.

19

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/controller-v1.clar#L133

As a result, fees and the reserve fund are effectively subtracted twice,
causing net assets to be understated. This leads to an incorrect share price
and can result in overpaid fees.

Recommendation In controller::handle-profit , when preparing the data
passed to state updates, use the gross reward amount (before deducting
fees and the reserve fund) for the reward field. Concretely, add the full
reward amount to the state (not the reward-net amount) to maintain
consistency with the net asset calculation.

20

[H-03] Excess Loss Handling Is Incorrect
Location:

controller-v1.clar#L211

Description In the current implementation, rewards are manually
synchronized by the rewarder role via controller::log-reward , which—per
the protocol documentation—is expected to run once per day.

When rewards are processed, if the total loss (management fee plus the
reward amount when the reward is negative) exceeds the available local
funds (pending reserve fund plus the reward amount when the reward is
positive), the protocol draws funds from the Reserve Fund (RF) contract to
cover the shortfall.

If the RF contract cannot fully cover the deficit, the remaining amount
becomes a net loss to total assets, effectively socializing the uncovered
loss.

This scenario is handled by controller::handle-loss-exceeds . In this
function, the loss is explicitly subtracted from the current reward state
(i.e., from total assets):

(let (
 (loss (- req-rf total-rf))
)
;; ... code ...
(if (> total-rf pending-rf)
 (try! (contract-call? .reserve-fund-v1 transfer sbtc-token
 (- total-rf pending-rf) reserve none))
 true
)
(ok (try! (contract-call? .state-v1 update-state
(list
 { type: "pending-fees", amount: mgmt-fee, is-add: true }
 { type: "pending-rf", amount: pending-rf, is-add: false })
(some { reward: loss, is-add: false })
none)))

However, the current implementation does not account for losses correctly
and can overstate (inflate) losses. The flow below clarifies the issue.

21

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/controller-v1.clar#L211

From a state-update perspective, pending-fees must be increased by the
management fee, which is done correctly:

{ type: "pending-fees", amount: mgmt-fee, is-add: true }

Similarly, because handle-loss-exceeds is only reached when the pending
reserve fund is insufficient to cover the loss, the entire pending-rf should
be deducted. This is also done correctly:

{ type: "pending-rf", amount: pending-rf, is-add: false })

The problem lies in how the remaining loss is applied to total assets:

(some { reward: loss, is-add: false })

The management fee is already accounted for as a loss by being added to
pending-fees . Therefore, it must not be deducted again from total assets
via a negative reward update. As implemented, loss is derived from req-
rf (which includes the management fee component) and is then applied
as an additional negative reward, resulting in the management fee being
double-counted.

Additionally, for correct accounting, any amount transferred from the RF
contract (if any) must be reflected positively in the reward accounting.
Denote this as transfer-amount .

At this point, two sub-cases exist:

1. Reward is positive (is-positive=true)

Correct accounting should be:

(some { reward: (+ reward transfer-amount), is-add: true })

Here, the transferred amount (which may be 0) is added to total assets
alongside the reward. This covers cases where the management fee is
large enough to create a net loss even when the reward is positive.

Example scenario:

22

reward: 5
management fee: 10
pending reserve fund: 2
reserve fund balance: 2

By adding the management fee to pending-fees , the system already records
a -10 impact. The true additional loss should be -1 , because req-rf=5
(management fee minus reward) and the available RF coverage is 2 + 2 ,
leaving a deficit of 1 .

The current implementation incorrectly records a -11 loss instead of -1 .
Under the corrected approach, the management fee is recorded as -10 ,
and 9 is added to assets as reward (5 reward + 4 total available RF),
resulting in the correct net loss.

2. Reward is negative (is-positive=false)

In this case, accounting must compare the magnitude of the negative
reward against the RF transfer amount. If the negative reward exceeds the
transferred amount, there is a net loss (in addition to the already-recorded
management fee). If the transferred amount exceeds the negative reward,
there is a net gain to total assets.

A correct approach is:

(let (
 (transfer-amount (- total-rf pending-rf))
 ;; only if reward is negative (is-positive = false)
 (account-data (if (>= reward transfer-amount)
 { reward: (- reward transfer-amount), is-add: false}
 { reward: (- transfer-amount reward), is-add: true}
))
)
;; ... code ...
(some { reward: (get reward account-data), is-add: (get is-add account-data) })

Recommendation

Update the implementation to correctly account for losses in both
positive- and negative-reward scenarios, while ensuring the management
fee is only accounted for once (via pending-fees). The fix should also
incorporate the RF transfer amount into the reward accounting.

23

Example implementation fix (note that print events should also be
updated accordingly):

(let (
 (transfer-amount (- total-rf pending-rf))
 (account-data (if is-positive
 { reward: (+ reward transfer-amount), is-add: true}
 (if (>= reward transfer-amount)
 { reward: (- reward transfer-amount), is-add: false}
 { reward: (- transfer-amount reward), is-add: true}
)
))
)

;; ... code ...
 (some { reward: (get reward account-data), is-add:
 (get is-add account-data) })

24

[H-04] Covered Loss Handling Is
Incorrect

Location:

controller-v1.clar#L174

Description In the current implementation, rewards are manually
synchronized by the rewarder role via controller::log-reward , which—per
the protocol documentation—is expected to run once per day.

When rewards are processed, if the total loss (management fee plus the
reward amount when the reward is negative) exceeds the available local
funds (pending reserve fund plus the reward amount when the reward is
positive), the protocol draws funds from the Reserve Fund (RF) contract to
cover the shortfall.

If the RF contract can cover the deficit, the underlying net assets should be
preserved and user share-price loss should be avoided. This scenario is
handled by controller::handle-loss-covered .

(let (
 (transfer-amount (if (> req-rf pending-rf) (- req-rf pending-rf) u0))
 (rf-decrease (if (> transfer-amount u0) pending-rf req-rf))
)
 ;; ... code ...
 (if (> transfer-amount u0)
 (try!
 (contract-call? .reserve-fund-v1 transfer sbtc-token transfer-amount reserve none))
 true
)
 (try! (contract-call? .state-v1 update-state
 (list
 { type: "pending-rf", amount: rf-decrease, is-add: false }
 { type: "pending-fees", amount: mgmt-fee, is-add: true })
 (some { reward: u0, is-add: false })
 none))

However, the current implementation does not correctly account for losses
at the state level. The flow below illustrates the issue.

From a state-update perspective, pending-fees must be increased by the
management fee, which is done correctly:

25

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/controller-v1.clar#L174

{ type: "pending-fees", amount: mgmt-fee, is-add: true })

Next, pending-rf must be decreased by the amount used to cover the
deficit. If pending-rf is insufficient, an additional transfer is pulled from
the RF contract (which is guaranteed to succeed in this code path). The rf-
decrease value is computed correctly and deducted from the pending
amounts:

{ type: "pending-rf", amount: rf-decrease, is-add: false }

The incorrect accounting occurs in the final step, where no reward/loss is
applied to the underlying total assets:

(some { reward: u0, is-add: false })

At this point, the logic should add or remove funds (depending on the
reward direction and the RF transfer amount) to keep the accounting
balanced and preserve net assets. Instead, it always applies a zero reward,
which can incorrectly reduce net assets and therefore the share price.

Consider the following example:

pending-fees = 20
pending-reserve = 20
pending-claim = 10
net-assets = 50

total-assets = pending-fees + pending-reserve + pending-claim + net-assets = 100

reserve-fund-balance = 50

Assume a reward of -20 (is-positive = false) and a management fee of
-25 (the - here denotes a loss).

The resulting req-rf is 45 . Since pending-reserve is only 20 , an additional
25 tokens are transferred from reserve-fund-balance to cover the shortfall.

The intended outcome is that net assets remain unchanged (i.e., net assets
before equals net assets after), while all components are accounted for
correctly. Net assets are computed as: net-assets = total-assets - pending-
fees - pending-reserve - pending-claim

26

Applying the current implementation:

1. pending-fees increases by 25 ⇒ net assets decrease by 25
⇒ net-assets = net-assets_original - 25

2. pending-reserve decreases by 20 ⇒ net assets increase by 20
⇒ net-assets = net-assets_original - 25 + 20

Because the reward/loss is not applied in the final step, the net result is
still a -5 change in net assets, which incorrectly reduces the share price.

A similar issue can occur when rewards are positive but the management
fee is larger.

Recommendation To fix this, the state update must also account for the
reward direction (gain vs. loss) and the RF transfer amount. In other
words, the final reward update should reflect both the reward value and
any amount transferred from the RF contract.

Example implementation (note that print events should be updated
accordingly):

(let (
 (account-data (if is-positive
 { reward: (+ reward transferred-amount), is-add: true}
 (if (>= reward transferred-amount)
 { reward: (- reward transferred-amount), is-add: false}
 { reward: (- transferred-amount reward), is-add: true}
)
))
)
;; ... code ...
 (some { reward: (get reward account-data), is-add:
 (get is-add account-data) })

By incorporating both the reward and the transfer amount, the accounting
remains balanced. Using the example above, the transfer amount is 45 - 20
= 25 . This offsets the remaining -5 discrepancy: the resulting account-data
becomes 25 - 20 = 5 with is-add: true , which correctly preserves net
assets and prevents an unintended share-price decrease.

27

8.2. Medium Findings

[M-01] Vault Withdrawal Share Rounding
Favors Users Over the Protocol

Location:

vault-v1.clar#L134

Description When users initiate a withdrawal via vault-v1::init-withdraw ,
they specify the amount of assets to withdraw. The contract then
calculates the number of shares to burn using the following formula,
which rounds down:

(shares (/ (* assets share-base) (get share-price state)))

Because the division rounds down, the computed value can slightly
underestimate the number of shares that should be burned. This allows
users to withdraw marginally more assets than their burned shares would
otherwise entitle them to. Over time, this discrepancy may compound and
negatively impact the protocol.

Recommendation Rounding should generally favor the protocol. In this
case, round up the number of shares to burn in init-withdraw .

Example implementation:

(define-public (init-withdraw (assets uint) (is-express bool))
 (let (
 (state
 (contract-call? .state-v1 get-withdraw-state contract-caller is-express))
- (shares (/ (* assets share-base) (get share-price state)))
+ (share-price (get share-price state))
+ (shares (/ (+ (* assets share-base) (- share-price u1)) share-price))
)

28

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/vault-v1.clar#L134

[M-02] Malicious Trader Can Drain
Removable Zest Collateral

Location:

zest-interface-v1.clar#L152-L237

Description Deposits into Zest v2 are performed via zest-interface-
v1::zest-deposit , which is callable by the approved trader role. This
function deposits into a specified Zest v2 vault via the vault-trait
argument, and the resulting LP tokens (represented by z-token-trait) are
then transferred.

By design, the trader role should only be able to call trading-related
functions (interfaces and the trading contract) and should not be able to
change which assets are approved for trading.

However, the current Zest deposit validations allow a malicious trader to
remove all removable collateral from Zest (while keeping the position
healthy) and then transfer it to an arbitrary address—effectively stealing
all removable collateral.

The issue lies in how vault validations are handled in the current zest-
interface-v1 contract interface.

Zest vaults are, by definition, both vaults and tokens themselves (a subset
of SIP-10). Zest vaults currently follow the interface below (note: Zest v2 is
still under development and may change; however, the dual nature of a
vault—deposit/redeem functionality plus SIP-10 compliance for LP
transfers—will remain):

29

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L152-L237

(define-trait tokenized-vault
 (
 ;; --- sip-10 ---
 (get-name () (response (string-ascii 32) uint))
 (get-symbol () (response (string-ascii 32) uint))
 (get-token-uri () (response (optional (string-utf8 256)) uint))
 (get-decimals () (response uint uint))
 (get-total-supply () (response uint uint))
 (get-balance (principal) (response uint uint))

 (transfer (uint principal principal (optional (buff 34)))
 (response bool uint))

 ;; --- reads ---
 (get-assets () (response uint uint))
 (convert-to-shares (uint) (response uint uint))
 (convert-to-assets (uint) (response uint uint))

 ;; --- mutate ---
 (deposit (uint uint principal) (response uint uint))
 (redeem (uint uint principal) (response uint uint))
))

In zest-interface-v1 , the zest-vault-trait-v1 trait is used instead, which
only requires deposit and redeem :

(define-trait zest-vault-trait
 (
 (deposit (uint uint principal) (response uint uint))
 (redeem (uint uint principal) (response uint uint))
)
)

This trait is used when treating the vault as a funds-moving contract.
Additionally, zest-interface-v1 uses a separate trait to represent the
underlying vault LP token, z-token-trait , which is a SIP-10 trait.

The implementation fails to account for the fact that the vault itself is the
SIP-10 token. In other words, the contract implementing z-token-trait
must be the same contract as the one implementing vault-trait . This
mismatch exists in both zest-deposit and zest-redeem , though the
mismatch alone is not the most severe issue.

More importantly, zest-interface-v1::zest-deposit does not validate the z-
token-trait argument at all. As a result, a trader can pass an arbitrary SIP-
10-compliant contract and cause zest-interface-v1 to call it with as-
contract privileges:

30

(try! (as-contract
 (contract-call? z-token-trait transfer received this-contract .reserve-v1 none)))

This causes the called contract to observe tx-sender and contract-caller
as zest-interface-v1 . From this position, a malicious contract can drain
assets by abusing the authority of zest-interface-v1 .

In theory, zest-interface-v1 should not hold SIP-10 tokens, since LP tokens
and collateral tokens are expected to be transferred to and from the
reserve contract.

However, within the malicious SIP-10 contract, an attacker can call zest-
market::collateral-remove using zest-interface-v1 as the account/recipient
argument. Because zest-interface-v1 is the tx-sender within the malicious
SIP-10 contract, the Zest market contract permits the call and removes
collateral (up to the maximum removable amount while keeping the
position healthy) to the zest-interface-v1 contract.

The malicious contract can then transfer that collateral to an arbitrary
address by calling the collateral token’s SIP-10::transfer . This transfer
succeeds because SIP-10 requires tx-sender or contract-caller to match
the sender, and in this context tx-sender remains zest-interface-v1 ,
enabling the collateral drain.

Example attack:

Trader role is compromised.
The trader calls zest-interface-v1::zest-deposit with an arbitrary vault
and supplies a malicious SIP-10 token as z-token-trait .
zest-deposit calls SIP-10::transfer on the malicious contract.
Inside the malicious SIP-10 contract (tx-sender and contract-caller are
zest-interface-v1):

zest-market::collateral-remove is called (for all collaterals), pulling
all removable collateral into zest-interface-v1 .
collateral::SIP-10::transfer is called to move funds from zest-
interface-v1 (permitted since tx-sender is zest-interface-v1) to an
attacker-controlled address.

Recommendation

31

Update vault-trait to use the tokenized-vault interface above, and reuse
vault-trait for transferring zTokens to and from the reserve. Remove the
separate z-token-trait entirely. Apply these changes in both zest-deposit
and zest-redeem .

32

[M-03] Premature Share Price Snapshot
Leads to Unbacked Pending Claims

Location:

vault-v1.clar#L222-L245
vault-v1.clar#L128-L164

Description
In the current implementation, users deposit assets into the vault and
receive hBTC shares. When they later initiate a redemption or withdrawal
by burning these shares, the amount of assets they receive is determined
using the vault’s current share price.

However, the vault’s share price is not perfectly synchronized with its real
asset value. Rewards and PnL adjustments are applied manually once per
day (per protocol documentation). Unless a withdrawal occurs
immediately after a reward distribution/update, the share price used for
the calculation may be stale.

When a withdrawal is initiated, a claim is created using this potentially
outdated price. The system must later fund the claim by transferring
assets from the reserve to the vault.

Consider the following scenario:

Alice deposits 100 units of assets into the vault; she is the only depositor.
The trader role opens a position using Alice’s funds.
The position incurs a PnL of -1, but the daily reward update has not yet
occurred.
Alice initiates a withdrawal for all her shares, which are valued using the
last recorded share price.
Her claim is created for 100 assets, even though the vault’s actual net
assets are 99.
At this point, the claim cannot be funded because the system’s true
holdings are insufficient to meet the promised payout.

33

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/vault-v1.clar#L222-L245
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/vault-v1.clar#L128-L164

To resolve this, the protocol team must manually transfer assets (outside
of the project) to the reserve and then fund the claim. Additionally,
because pending claims are not affected by subsequent PnL, negative PnL
cannot be passed through to users with pending claims.

Recommendation
Restructure the withdrawal process so that the share price used is the one
at the time the claim is funded, rather than at the time the withdrawal is
initiated.

A full breakdown of the proposed changes:

The vault init-redeem logic should transfer the hBTC shares to the vault
itself.
The claims map should include a new shares field to store the number
of shares to be withdrawn and burned at funding time.
Remove the init-withdraw function, since the recorded asset amount is
not guaranteed, making the function unreliable and potentially
confusing.
When a claim is funded, burn the shares at that moment and store the
resulting asset amount in the amount field of the claims entry, to be used
normally in withdraw .
The vault does not need to call the "pending-claims" operation, since all
claims become “pending shares” and are tracked in the vault. If needed,
the pending-claims field can be retained and repurposed to represent
total shares pending burn. In that case, net-assets should no longer
incorporate pending-claims .
No changes are needed for the trading-v1 contract.
If pending-claims is not repurposed to track shares, the related logic can
be removed from the state-v1 contract.

This prevents scenarios like the one described, because users receive the
exact amount available at the time of funding. As a result, users cannot
force the protocol team to cover shortfalls caused by stale pricing.

Note that this change means users will realize any profit or loss that
occurs between redeem initiation and claim funding. This modifies the
current user-facing behavior, which implies that once a withdraw/redeem

34

is initiated, the output amount is guaranteed to be the saved amount
(albeit only after sufficient funds are added and the claim is funded).

With the new logic, the funding time affects the amount received. During
the cooldown period, only the manager role can call fund-claim ; after the
cooldown, anyone can call it. In both cases, the caller can influence when a
claim is funded and therefore (to some extent) the amount the user
receives (e.g., before or after a reward update). This is not necessarily an
issue in practice: the team can fund claims during cooldown via the
manager role, and post-cooldown funding becomes market-driven since
anyone can call it. This also prevents users from timing exits by waiting to
accumulate rewards and then exiting instantly.

Ultimately, the trade-off is between (a) requiring the protocol to cover
negative PnL that can arise from unbacked pending claims while
guaranteeing a snapshotted withdrawal amount, and (b) ensuring all
withdrawals are fully backed at funding time, but without guaranteeing
the deliverable asset amount at initiation.

35

[M-04] Vault Cannot Be Emptied After
Share Price Divergence

Location:

state-v1.clar#L380

Description The vault’s share price starts at a 1:1 ratio with the
underlying assets and changes over time as rewards and fees accrue.

When a user initiates a withdrawal, the vault state is updated via
state::update-state , which calculates the share price as follows:

(define-read-only (get-share-price)
 (let (
 (net-assets (get-net-assets))
 (total-supply (unwrap-panic
 (contract-call? .hbtc-token-v1 get-total-supply)))
)
 (if (> total-supply u0)
 (/ (* net-assets share-base) total-supply)
 share-base ;; 1:1 for the first deposit
)
)
)

After the state update, the contract enforces a maximum deviation check
by comparing the pre-update and post-update share prices:

36

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L380

(define-read-only (check-max-deviation (old-price uint) (new-price uint))
 (let (
 (threshold (get-max-deviation))
 (abs-diff (if (> new-price old-price)
 (- new-price old-price)
 (- old-price new-price)))
 (deviation (if (> old-price u0)
 (/ (* abs-diff bps-base) old-price)
 u0)) ;; Handle edge case of first deposit
)
 (
 print{action:"check-max-deviation",
 data:{old:old-price,
 new:new-price,
 deviation:deviation,
 max-deviation:threshold}}
)
 (ok (asserts! (<= deviation threshold) ERR_DEVIATION))
)
)

If a withdrawal fully empties the vault, the share price resets (because
total-supply becomes 0 after burning shares). In that case, the max
deviation check can fail and prevent the transaction from completing.

Consider the following scenario:

Current share price: 1 asset = 4 shares
Alice is the only remaining depositor with 100 shares
Alice attempts to withdraw all her shares

The deviation check evaluates as follows:

old-price = 0.25 * share-base
new-price = share-base (since total supply is now 0 after share burn)
abs-diff = 0.75 * share-base
(abs-diff * bps-base) / old-price = 300%

Because the share price resets when the vault is emptied, the deviation
exceeds any reasonable threshold, causing the final withdrawal to revert.

Recommendation

Bypass the max deviation check when the vault is being emptied (i.e., on
the last withdraw/redeem). One approach is to replace the (if (> old-
price u0) guard with a check on total-supply , where total-supply is the
hBTC total supply at that time.

37

Example implementation:

(threshold (get-max-deviation))
 (abs-diff (if (> new-price old-price)
 (- new-price old-price)
 (- old-price new-price)))
+ (total-supply (unwrap-panic
+ (contract-call? .hbtc-token-v1 get-total-supply)))
- (deviation (if (> old-price u0)
+ (deviation (if (> total-supply u0)
 (/ (* abs-diff bps-base) old-price)
- u0)) ;; Handle edge case of first deposit
+ u0)) ;; Handle edge case of last withdraw/redeem

Note: the (if (> old-price u0) check is not effective for the “first
depositor” case implied by the comment ;; Handle edge case of first
deposit , since the first old-price will be share-base for the first deposit.
However, after the first deposit, the share price does not change due to
how it is calculated, which results in an implicit deviation bypass.

38

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L153

[M-05] Updated Management And
Performance Fees Are Applied
Retroactively

Location:

state-v1.clar#L539-L551
controller-v1.clar#L36-L37

Description In the current design, rewards are manually synchronized by
the rewarder role calling controller::log-reward . According to the protocol
documentation, this operation is intended to occur once per day. At that
time, management fees are applied to protocol assets, and a performance
fee may be applied if profit was generated during the previous 24 hours.

The management and performance fee percentages are configured and
stored in the state-v1.fees map. This map can be updated by the trusted
admin via state-v1::set-fees .

However, changing fees mid-cycle can create issues depending on where
the protocol is within the daily reward cycle. For example:

If fees are changed one hour before a controller::log-reward call, the new
fees will be applied to the entire prior 24-hour period, even though the
new fee was in effect for only one hour (1/24 of the period).

Depending on whether the fee is increased or decreased, the protocol will
either overcharge or undercharge for the pending rewards and
management effort—effectively applying the updated fees retroactively to
the previous 24 hours.

Recommendation

In many protocols with reward or interest accrual systems, fee updates are
coupled with an accrual/synchronization step (i.e., the accrual function is
called as part of the fee-change logic). In this case, that would mean calling

39

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L539-L551
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/controller-v1.clar#L36-L37

controller-v1::log-reward from state-v1::set-fees , which is not possible
under the current system architecture.

Additionally, tightly coupling controller::log-reward and state-v1::set-
fees (in either direction) can introduce other issues, particularly when
only a subset of fees is being updated.

As a workaround, modify set-fees to detect whether the management fee
or performance fee is actually changing (i.e., the call intends to modify
these values). If so, only allow the update within a short time window after
the most recent log-reward call, determined by comparing the current time
to last-log-ts .

This approach allows fee changes shortly after rewards are distributed
(e.g., within one hour), preserving operational flexibility while preventing
meaningful retroactive fee application.

40

[M-06] hBTC Token Is Not SIP-10
Compliant

Location:

hbtc-token.clar#L47
hbtc-token.clar#L51

Description
The SIP-10 standard specifies that the transfer function should return
error codes that follow the same pattern as the built-in ft-transfer? and
stx-transfer? functions:

When returning an error in this function, the error codes should
follow the same patterns as the built-in ft-transfer? and stx-
transfer? functions.

error code reason

u1 sender does not have enough balance

u2 sender and recipient are the same principal

u3 amount is non-positive

u4 sender is not the same as tx-sender

However, the hBTC token contract uses a non-standard error code for the
case where sender is not tx-sender or contract-caller :

(define-constant ERR_NOT_AUTHORIZED (err u100001))

(asserts! (or (is-eq sender tx-sender)
 (is-eq sender contract-caller)) ERR_NOT_AUTHORIZED)

Additionally, SIP-10 requires that the memo field is emitted only when it is
not none :

41

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/tokens/hbtc-token.clar#L47
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/tokens/hbtc-token.clar#L51
https://github.com/stacksgov/sips/blob/main/sips/sip-010/sip-010-fungible-token-standard.md#transfer

the implementer has to make sure that the memo is emitted by
adding a print statement if the ft-transfer? is successful and the
memo is not none.

The current implementation prints the memo unconditionally:

(match (ft-transfer? hBTC amount sender recipient)
 response (begin
 (print memo)

As implemented, hBTC is not SIP-10 compliant, which may cause
integration issues with third-party tooling and services.

Recommendation

Replace ERR_NOT_AUTHORIZED with u4 .
Update the transfer function to print the memo only when it is not none .

An example implementation (adapted from sBTC) is shown below:

(define-constant ERR_NOT_AUTHORIZED (err u4))

(define-public (transfer (amount uint) (sender principal)
 (recipient principal) (memo (optional (buff 34))))

(begin
(asserts! (or (is-eq tx-sender sender)

 (is-eq contract-caller sender)) ERR_NOT_AUTHORIZED)
(try! (ft-transfer? hBTC amount sender recipient))
(match memo to-print (print to-print) 0x)
(

 print{action:"transfer",
 data:{sender:sender,
 recipient:recipient,
 amount:amount,
 block-height:burn-block-height}}
)
 (ok true)

)
)

Note: For logging consistency, the printed event’s sender field should be set
to sender (not tx-sender).

42

https://github.com/stacks-sbtc/sbtc/blob/main/contracts/contracts/sbtc-token.clar#L119-L126

[M-07] hBTC Public Share Burning
Enables a First-Deposit DoS Attack
Variant

Location:

hbtc-token.clar#L98-L101

Description The system’s primary state variables are managed within the
state contract.

Whenever the state is updated via state::update-state , the current share
price is recorded and later compared against the new share price in
state::check-max-deviation . If the relative difference exceeds the max-
deviation threshold set by the contract owner, the update reverts.

The deviation check is implemented as follows:

(threshold (get-max-deviation))
(abs-diff (if (> new-price old-price)
 (- new-price old-price)
 (- old-price new-price)))
(deviation (if (> old-price u0)
 (/ (* abs-diff bps-base) old-price)
 u0)) ;; Handle edge case of first deposit

The share price itself is computed as:

(define-read-only (get-share-price)
 (let (
 (net-assets (get-net-assets))
 (total-supply (unwrap-panic
 (contract-call? .hbtc-token-v1 get-total-supply)))
)
 (if (> total-supply u0)
 (/ (* net-assets share-base) total-supply)
 share-base ;; 1:1 for first deposit
)
)
)

43

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/tokens/hbtc-token.clar#L98-L101

At the same time, users can freely burn their shares through the
hbtc::burn function:

(define-public (burn (amount uint))
 (ft-burn? hBTC amount tx-sender)
)

Consider the following scenario:

The vault starts empty.
Bob deposits x assets at a 1:1 share price.
Bob immediately burns all x shares.

At this point, the vault holds x net assets but has 0 total supply, so the
share price defaults to 1:1 .

When a new user attempts to deposit, the minted shares will equal the
deposited assets. However, the new share price used for the max-deviation
check will be computed as:

newPrice = (x + y) * 1e8 / y = 1e8 + x * 1e8 / y

Therefore, old-price = 1e8 and new-price = 1e8 + x * 1e8 / y . If the
absolute difference x * 1e8 / y exceeds the system’s max-deviation limit
(default 0.05%, max 0.2%), the deposit transaction fails.

As a result, the initial depositor can intentionally burn their shares to
realistically block all subsequent deposit amounts.

Recommendation

Remove the public hbtc::burn function. This eliminates the vector
described above and also reduces the risk of uncovered accounting
discrepancies.

If a public burn function is ever needed due to market demand, deploy a
new approved wrapper contract that calls hbtc::burn-for-protocol .

Protocols commonly suffer from donation-style attacks caused by
shares/assets manipulation. To mitigate these issues, user actions should
be limited to strictly necessary operations. If a donation-like action is

44

required (e.g., depositing and then burning shares), the protocol can
instead decide to perform it internally at a later time.

45

[M-08] Maximum and Minimum Cap
Limitations May Endanger the Protocol

Location:

state-v1.clar#L605-L630
state-v1.clar#L641-L648
state-v1.clar#L731-L742
state-v1.clar#L765-L775

Description
The current hBTC protocol logic enforces fixed maximum and minimum
limits on certain state configuration values. These limits cannot be
bypassed by any privileged role, including the owner.

The maximum limits are as follows:

Limit Value Description

Max Reward 20 bps (0.20%)
Maximum asset
reward/loss per log-reward
call

Max Deviation 20 bps (0.20%) Maximum share price
deviation per update

Max Slippage 500 bps (5.00%) Maximum slippage for asset
trades

Max
Management
Fee

54 % of bps
(0.0054%)

Maximum daily
management fee (2%
annualized)

Max
Performance
Fee

2000 bps
(20.00%)

Maximum performance fee
on profits

Max Exit Fee 100 bps (1.00%) Maximum exit fee on
withdrawals

46

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L605-L630
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L641-L648
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L731-L742
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L765-L775

Max Reserve
Rate

5000 bps
(50.00%)

Maximum reserve fund
allocation rate

Max Express Fee 200 bps (2.00%) Maximum express
withdrawal fee

Max Cooldown
2,592,000 seconds
(30 days)

Maximum withdrawal
cooldown period

Max Block Delay 60 blocks (~5
minutes)

Maximum price staleness
check

The minimum limits are as follows:

Limit Value Description

Min Update
Window

3,600 seconds (1
hour)

Minimum time between
reward updates

Note: These values represent the maximum/minimum bounds that the
configuration can be set to, not the default values.

Some of these limits may unintentionally introduce operational
constraints and should not be subject to hard caps. Specifically:

1. Max Reward: Maximum asset reward/loss per log-reward call
This parameter limits how much reward or loss can be applied in a
single call, constraining the rewarder role. Only the owner can set this
value via state-v1::set-max-reward , but it cannot be increased above
0.2%.
In extreme or unforeseen situations (e.g., black swan events or
prolonged market volatility), a higher value may be required. Under
such conditions, the 0.2% cap could severely limit protocol PnL
updates and cause the protocol to drift out of sync with external
systems, potentially leading to user-facing issues such as missed
rewards or incorrectly applied losses.

2. Max Deviation: Maximum share price deviation per update
This parameter also acts as a safeguard on the rewarder role. Rather
than limiting reward/loss relative to total assets, it restricts the

47

maximum allowed change in share price per update. In certain
extreme scenarios, the protocol team may need to temporarily raise
this limit beyond the current 0.2% maximum.
While this constraint helps mitigate the impact of a compromised
rewarder, it can also block legitimate updates when rewards or losses
are large relative to the vault’s net assets. For example:

A large position liquidation could generate fees that cause a
significant share price drop, potentially exceeding the deviation
threshold.
If a whale withdraws shortly before a reward distribution, net
assets may drop sharply while the reward (based on active trading
assets) remains unchanged, resulting in a disproportionately high
reward-to-asset ratio that fails the deviation check and reverts.
Although the deviation check provides meaningful protection, the
hard cap creates a critical operational limitation. Since only the
owner can modify it via state-v1::set-max-deviation , the hard
maximum should be removed to preserve flexibility during
exceptional events.

3. Max Slippage: Maximum slippage for asset trades
Slippage limits should generally remain adjustable to accommodate
changing market conditions. In this protocol, the team defines the
slippage incurred when minting USDh; however, if external conditions
require slippage above 5% (the current maximum), trading would be
effectively halted until a new trading contract is deployed that does
not enforce this slippage check.
Additionally, for any non-Hermetica swap interfaces added in the
future, a 5% maximum slippage cap can introduce significant risk.
Hardcoded slippage has previously caused issues in other systems
(e.g., 1900 ETH blocked and the ULTI.ORG protocol failure).
Since only the owner can set this value (via set-max-slippage or
request-new-asset), the cap primarily introduces limitations without
meaningfully improving security.

4. Max Block Delay: Maximum price staleness check
This value is currently not used in the ecosystem. Additionally, using

48

https://x.com/0xULTI/status/1875220544997486921
https://x.com/0xULTI/status/1875220541625528539

block counts instead of time is not recommended. The description 60
blocks (~5 minutes) is also inaccurate given current Stacks block time
variability, which can be as low as ~3 minutes and 50 seconds.
The cap should be removed, and the parameter should be converted
to a time-based value (e.g., seconds) rather than a block-based value.

5. Min Update Window: Minimum time between reward updates
During highly volatile market conditions, more frequent updates may
be necessary. A 1-hour minimum update window prevents real-time
reaction and may be unjustified in uncertain conditions—especially
given that only the owner can set this value via set-update-window .
More broadly, since a compromised owner can already cause
catastrophic damage (e.g., adding malicious components, removing
admins, granting roles, and draining reserves), restricting trusted
owner actions via hard caps—when those caps can also harm
protocol operations—is not advisable.

Recommendation
Remove the hard maximum caps on the configurations listed above.
Additionally, replace the block-based delay with a timestamp/time-based
parameter.

49

https://api.hiro.so/extended/v2/blocks/average-times
https://api.hiro.so/extended/v2/blocks/average-times

[M-09] Tokens With tx-sender -Based
Authorization Are Not Fully Supported

Location:

hermetica-interface-v1.clar#L124
hermetica-interface-v1.clar#L161
hermetica-interface-v1.clar#L178
zest-interface-v1.clar#L61
zest-interface-v1.clar#L92
zest-interface-v1.clar#L186

Description
The current protocol implementation has limitations when interacting
with tokens that require tx-sender -based authorization. At least two
relevant token types fall into this category:

stSTX
STX wrappers

These tokens require tx-sender authorization for transfers and do not
work when the caller is contract-caller . As a result, transfer calls will
revert unless executed under an as-contract? context. For example, the
stSTX token contract enforces the following check:
(asserts! (is-eq tx-sender sender) (err ERR_NOT_AUTHORIZED))

Similarly, STX wrappers typically rely on stx-transfer? , which requires
that the sender is the current tx-sender .

This limitation is relevant in the following cases:

50

https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/hermetica-interface-v1.clar#L124
https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/hermetica-interface-v1.clar#L161
https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/hermetica-interface-v1.clar#L178
https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L61
https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L92
https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L186
https://explorer.hiro.so/txid/SP4SZE494VC2YC5JYG7AYFQ44F5Q4PYV7DVMDPBG.ststx-token?chain=mainnet&tab=sourceCode
https://docs.stacks.co/reference/clarity/functions#stx-transfer

In hermetica-interface-v1 :
hermetica-mint : when transferring leftover minting assets to the
reserve
hermetica-redeem : when transferring the redeeming-asset to the
reserve
sweep : when transferring assets to the reserve

In zest-interface-v1 :
zest-collateral-remove : when transferring assets to the reserve
zest-borrow : when transferring assets to the reserve
sweep : when transferring assets to the reserve

Note that stSTX is particularly relevant because it is supported by Zest and
may therefore be used as an integration target for the current interface.

Recommendation
For zest-collateral-remove and zest-borrow , it is sufficient to use the Zest
market contract’s recipient feature, avoiding the need to handle tx-
sender -restricted transfers directly (this is also covered in a separate
finding).

For the remaining cases, if tokens such as stSTX or STX wrappers are ever
used as collateral in the Zest interface, then zest-interface-v1:sweep should
include an as-contract? clause to enable sweeping these assets.

In hermetica-interface-v1 , all three instances listed above should add an
as-contract? clause (with the appropriate allowance/authorization) to
support tx-sender -restricted assets (e.g., STX wrappers).

51

[M-10] STX Integration Issues Due to
Clarity 4 Security Constraints

Location:

hermetica-interface-v1.clar
zest-interface-v1.clar
fee-collector-v1.clar
reserve-fund-v1.clar
reserve-v1.clar

Description
Clarity 4 introduces breaking changes to as-contract behavior:

as-contract was removed.
as-contract? was introduced and applies fully restricted token
allowances by default to all passed tokens.

Throughout the codebase, there are multiple instances where token
allowances are either overly permissive (e.g., using with-all-assets-unsafe ,
such as in the Zest interface) or narrowly scoped to fungible tokens only
(e.g., in reserve-v1 via ((with-ft (contract-of asset) "*" amount))).

While the current implementation targets sBTC, USDh, and sUSDh, project
documentation indicates that STX may be supported in the future.

A key constraint arises with certain STX “wrapper” tokens that transfer
native STX and do not have a backing fungible token. In such cases,
transfers require (with-stx amount) rather than with-ft . Therefore, the
code must differentiate between STX transfers and standard FT transfers.

The intent of an STX wrapper is to allow STX to be handled like other
fungible tokens without requiring special-case logic. This was feasible
prior to Clarity 4. However, with the with-stx distinction, a simple
wrapper that only calls stx-transfer? becomes constrained because stx-
transfer? requires the sender to be the current tx-sender .

52

https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/hermetica-interface-v1.clar
https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar
https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/fee-collector-v1.clar
https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/reserve-fund-v1.clar
https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/reserve-v1.clar
https://docs.stacks.co/reference/clarity/functions#stx-transfer

Some parts of the codebase currently use with-all-assets-unsafe , which
permits both STX and FT transfers but provides no meaningful security
controls. This applies to the Zest interface (as noted in Loose Token
Allowances On Zest Market Interface Calls) and the Hermetica interface
(as noted in Hermetica Interface Mint Asset Transfer Restriction Can
Be Improved).

In contrast, the token-holding contracts— reserve , reserve-fund , and fee-
collector —cannot support STX outflows because ((with-ft (contract-of
asset) "*" amount)) restricts outflows to fungible tokens only.

Recommendation
Supporting STX while preserving Clarity 4 security improvements can be
achieved in several ways.

When integrating with Zest v2, a dedicated STX wrapper contract is
required. That wrapper can also be used to detect whether a withdrawal
requires STX allowances. The following pattern can be applied at each
transfer site that may involve STX:

(let ((asset-contract (contract-of asset)))
 (if (is-eq asset-contract ZEST-STX-WRAPPER-CONTRACT)
 (as-contract? ((with-stx amount))
 (try! (contract-call? asset transfer amount tx-sender account none)))
 (as-contract? ((with-ft asset-contract "*" amount))
 (try! (contract-call? asset transfer amount tx-sender account none))))))

This approach adds overhead but preserves existing entry points and
logic, provided it is consistently applied wherever STX may be transferred.

Alternatively, new entry points can be introduced that explicitly target the
STX wrapper (e.g., zest-deposit-stx). However, token-accumulating
contracts (e.g., reserve) would still need a mechanism to distinguish STX
from standard FT allowances.

Because STX integration may be required, the reserve contract (and any
other contract that may hold STX) must be updated regardless. Contracts
that may custody STX should either implement the conditional logic above
or adopt a less restrictive compromise that allows both FT and STX
outflows:

((with-ft (contract-of asset) "*" amount) (with-stx amount))

53

This enables STX support while still providing some limitation on
outflows. It is preferable to with-all-assets-unsafe , though only marginally.

In summary, there are two main paths:

1. If STX support is planned, the current token-holding contracts do not
support STX outflows and require changes (notably fee-collector-v1 ,
reserve-fund-v1 , and reserve-v1).

2. If the Zest or Hermetica interfaces must support STX, they should either
retain with-all-assets-unsafe (not recommended) or be updated using
the conditional approach above. Additionally, the recommendations in
Tokens With tx-sender Type Authorization Are Not Fully Supported
must be implemented to fully enable STX integration.

54

8.3. Low Findings

[L-01] Incomplete Blacklist Flow
Location:

blacklist-v1.clar#L89-L94
blacklist-v1.clar#L96-L101
vault-v1.clar#L137-L138
vault-v1.clar#L185-L205

Description
The blacklist mechanism in sUSDh acts as an access-control guard against
bad actors and sanctioned entities. Depending on whether an address is
softly or fully blacklisted, it is either denied access to staking-related calls
or has its balance fully frozen.

In contrast, the hBTC blacklist mechanism is only partially enforced. The
withdrawal/redeem flow performs blacklist checks during the init-*
functions, but does not re-check blacklist status during the settlement
step.

Additionally, hBTC transfers do not fully enforce blacklist restrictions for
the sender and/or recipient.

Recommendation
Fully implement and consistently enforce the blacklist functionality across
all relevant flows (including settlement and transfers), aligning the
behavior with sUSDh .

55

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/blacklist-v1.clar#L89-L94
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/blacklist-v1.clar#L96-L101
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/vault-v1.clar#L137-L138
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/vault-v1.clar#L185-L205

[L-02] Missing Reset Mechanism for
Custom Parameters

Location:

state-v1.clar#L558
state-v1.clar#L585

Description
In the state-v1 contract, principals use the default exit fee and cooldown
settings unless custom values are configured.

The fee setter can assign custom exit fees to specific principals, and the
admin can assign custom cooldowns. These values are stored in the
custom-exit-fee and custom-cooldown maps.

However, the contract does not provide a way to revert a principal’s
custom parameters back to the defaults. Even if a custom value is manually
set to match the current default, it will not track future default updates. As
a result, the principal may continue using an outdated value if the default
changes later.

Recommendation
Add reset-custom-exit-fee and reset-custom-cooldown functions that remove
entries from the custom-exit-fee and custom-cooldown maps, allowing
principals to fall back to the default parameters.

56

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L558
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L585

[L-03] Management Fee Overstated by
Using Total Assets

Location:

controller-v1.clar#L37

Description In the current design, rewards are manually synchronized by
the rewarder role calling controller::log-reward . Per the protocol
documentation, this operation is intended to be performed once per day.

During this process, the management fee is calculated as a percentage of
total-assets :

(mgmt-fee (/ (* (get mgmt-fee fees) total-assets) bps-base pct-base))

This is also reflected in the project documentation:

Management fee:

Timing: daily
Target: % of total-assets

However, total-assets includes pending claims, pending fees, and the
pending reserve fund. Charging the management fee on these components
is excessive and/or incorrect, as it overstates the management fee.

As a result, users who remain in the protocol implicitly receive lower net
rewards due to assets associated with users who are exiting the protocol.

Recommendation Replace total-assets with net assets (retrieved via
state::get-net-assets) when calculating the management fee. For a more
efficient implementation, the net assets value can be added to the
state::get-reward-state getter.

57

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/controller-v1.clar#L37

[L-04] Missing Explicit Validation for is-
express Parameters

Location:

state-v1.clar#L539
state-v1.clar#L562
state-v1.clar#L571

Description
When initiating a redemption or withdrawal, users must provide a value
for the is-express parameter.

Per the protocol documentation, is-express allows users to opt into a
shorter cooldown period in exchange for a higher exit fee. However, this
relationship is not enforced on-chain. For example, an admin could
configure a shorter cooldown with a lower exit fee, which would
contradict the intended economic design.

This inconsistency may result in unexpected or unfair withdrawal
conditions for users.

Recommendation
Add validation logic in the state contract to enforce a consistent
relationship between cooldown periods and exit fees. Specifically, update
the state contract to ensure:

When setting the regular exit fee, it is less than (or equal to, if
intentionally allowing parity) the express exit fee.
When setting the regular cooldown, it is greater than (or equal to) the
express cooldown.
When setting the express cooldown, it is less than (or equal to) the
regular cooldown.

Note: Allowing equality may be appropriate if the intent is to temporarily
remove the distinction between express and regular behavior.

58

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L539
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L562
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L571

[L-05] Vault withdraw-many Functionality Is
Brittle

Location:

vault-v1.clar#L166-L181

Description The current vault exit logic consists of multiple steps:

1. Depositors initiate a withdrawal by calling either init-withdraw or init-
redeem , which creates a claim.

2. A privileged manager role then funds the specific claim.
3. Anyone can call withdraw for a specific claim, which correctly sends

funds to the claim creator.

To optimize step (3), since anyone can withdraw on behalf of others, the
withdraw-many function was introduced to facilitate up to 1,000
withdrawals in a single call.

However, the current implementation of withdraw-many is not well-suited
for bulk withdrawals because it reverts the entire transaction if any
underlying claim has already been withdrawn.

Consider the following scenario:

A large trade occurs and 200 claims are funded.
A keeper submits a withdraw-many transaction including those 200
claims.
At the same time, normal users (who also see the funded claims) submit
withdrawals independently.
If any of those claims are withdrawn before the keeper’s withdraw-many
executes, the entire withdraw-many transaction reverts. This forces the
keeper to retry with smaller batches over a longer period, since organic
withdrawals may continue to occur.

Recommendation Modify withdraw-many to use a map -style approach
instead of a fold , returning a list of responses from each withdraw call.

59

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/vault-v1.clar#L166-L181

This would allow the function to process all claims and report per-claim
failures without reverting the entire execution when a single withdrawal
fails.

60

[L-06] hBTC Token Name Should Not Be
Changeable

Location:

hbtc-token.clar#L14-L15
hbtc-token.clar#L71-L76

Description
The hBTC token contract currently allows the underlying fungible token
name to be modified.

A token’s name and symbol—together with the contract address—are
commonly used by external integrators and price aggregators for display
purposes. As a result, making these values changeable can lead to
significant user confusion if they are updated after integration.

While SIP-10 does not explicitly prohibit changing these fields, it is
generally expected that a fungible token’s name and symbol remain
immutable after launch.

In the current hbtc-token contract, the token name can be changed via the
set-token-name function.

Recommendation
Remove the set-token-name function from the hbtc-token contract.
Additionally, replace the token-name and token-symbol data variables with
constants, since these values are not intended to change.

61

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/tokens/hbtc-token.clar#L14-L15
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/tokens/hbtc-token.clar#L71-L76

[L-07] Reward Distribution Should Not
Be Allowed After the Vault Has Been
Emptied

Location:

controller-v1.clar#L29-L68
state-v1.clar#L500

Description
In the current implementation, rewards are manually synchronized by the
rewarder role via controller::log-reward , which—per the protocol
documentation—is expected to be called once per day.

Because rewards are distributed daily, edge cases can arise and should be
accounted for.

One such case occurs when the vault is emptied mid-period, yet there are
still rewards accrued for that period. In this scenario, log-reward would
technically attribute rewards to users, but since all users have already
exited the system, distributing rewards has no practical meaning.

Additionally, when the vault is empty, calling log-reward (e.g., with reward =
0 and is-positive = true to update last-log-ts) may revert in some cases.

This revert occurs because, even with zero assets in the vault,
state::update-state still proceeds with values set to 0 . During event
emission, the following computation is performed:

return: (/ (* (get reward data) bps-base pct-base) init-total-assets),

When init-total-assets is 0 , this results in a DivisionByZero error.
Consequently, the reward distribution process fails when the vault is
empty (i.e., no users hold hBTC and no assets remain in the vault).

A related edge case arises when the vault has zero net assets but some
pending (uncommitted) assets. In this situation, net-assets is 0 while

62

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/controller-v1.clar#L29-L68
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L500

total-assets is positive, which avoids the division-by-zero.

However, if a positive reward is distributed under these conditions, the
vault’s net assets increase despite there being no shares to represent
ownership of the reward. This could allow the next depositor to capture
unowned profit, or potentially trigger a max deviation failure depending
on the reward and deposit amounts.

Overall, the nuances and corner cases introduced by allowing log-reward
to be called when the vault is empty outweigh any benefit of permitting it.

Recommendation
Since the system should not realistically require reward distribution when
total-supply is 0 , explicitly forbid calling log-reward in this situation.

Specifically, in log-reward , assert that the hBTC token total supply is non-
zero; otherwise, revert.

63

[L-08] Positive Slippage Remains in the
Hermetica Interface Contract After a
Mint

Location:

hermetica-interface-v1.clar#L96-L124

Description In the hermetica-interface-v1 interface contract, the
hermetica-mint function allows a trader to convert approved assets into
USDh .

From a slippage perspective, the function accepts a slippage-tolerance-
input parameter. This value is capped at the maximum allowed slippage
(5%) and then forwarded to the underlying minting-auto-trait::mint call,
where the slippage check is ultimately enforced.

The auto-minting contract pulls the required amount-asset tokens from the
hermetica-interface-v1 caller and then transfers the resulting USDh amount
(after slippage is applied) back to the caller.

However, the interface contract incorrectly assumes that the amount-asset
retrieved from the reserve contract will be fully consumed by the minting-
auto-trait::mint call.

If the amount is underestimated off-chain, the mint fails during the
minting contract transfer step (see minting contract transfer):

(try! (contract-call? minting-asset transfer
 (- amount-asset-required fee-amount) contract-caller (unwrap-panic (get custody-address stat

If the amount is overestimated, the excess asset tokens remain in the
hermetica-interface-v1 contract. These funds remain stranded until the
trader performs a minting-auto-trait::sweep call to recover them.

Recommendation

64

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/hermetica-interface-v1.clar#L96-L124
https://explorer.hiro.so/txid/SPN5AKG35QZSK2M8GAMR4AFX45659RJHDW353HSG.minting-auto-v1-2?chain=mainnet

After the minting-auto-trait::mint call, query the interface contract’s
balance of the minting-asset-trait token. If the balance is non-zero,
transfer the remaining tokens back to the reserve.

Note: This approach also effectively acts as a sweep for any assets
previously left in the contract. If this behavior is not desired, perform a
pre-/post-balance check to calculate the exact amount consumed and
return only the newly leftover tokens.

65

[L-09] Race Condition During Fund
Transfers Due to Rewarder Role
Ambiguity

Location:

controller-v1.clar#L79

Description In the current design, the rewarder role is authorized to both
(1) log PNL/rewards and (2) move pending fees and reserve funds. This
dual capability raises two concerns:

1. It is not documented. The current documentation only states: Rewarder:
Rewarders can log-rewards in .controller .

2. Allowing the rewarder to fund transfers introduces a potential race
condition with the manager.

The availability of funds in the reserve contract depends on trading
activity managed by the trader role, which generates yield using the
vault’s capital. When a user initiates a withdrawal, the trader releases the
required liquidity from trading positions to satisfy the withdrawal.

At that point, the manager can fund the withdrawal immediately (even if
the cooldown period has not yet expired), or any user can fund it once the
cooldown ends.

Consider the following scenario:

All vault assets are currently locked in trading positions.
Pending fees = 50, pending RF = 50.
Alice initiates a withdrawal of 100 assets.
The trader releases 100 assets.
Simultaneously, the manager attempts to fund Alice’s claim while the
rewarder calls controller::fund-transfers .

Because there is no coordination between the manager and rewarder
roles, a race condition can occur in which both roles attempt to act on the

66

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/controller-v1.clar#L79

same funds concurrently.

Recommendation

Restrict access to the fund-transfers function by removing the rewarder
role and granting access exclusively to the manager role. This allows the
manager to properly coordinate the destination of released funds as
needed.

Additionally, clearly document which roles are permitted to call
controller::fund-transfers .

67

[L-10] Admin Should Not Be Able To
Change Price Staleness Threshold

Location:

state-v1.clar#L643

Description The current role documentation states that the admin role is:

Admin: The admin is the second highest governance role. Admins
can set permissions for day-to-day operations of the vault in the
state contract without having critical governance access. A
compromise of the admin cannot lead to loss of funds. The admin
is a cold single-sig without a timelock.

However, an admin can indirectly cause loss of funds to third parties by
being able to configure the protocol’s staleness check via state-v1::set-
block-delay .

While the current codebase snapshot does not use the block-delay logic,
any future implementation that relies on it could be impacted. Specifically,
setting an excessively high staleness threshold may allow the protocol to
accept stale prices, which can lead to indirect loss of funds.

Recommendation Update state-v1::set-block-delay so it is only callable
by the system owner.

Additionally, change the configuration to be time-based rather than block-
based, since block time is not a reliable measure of elapsed time and can
vary significantly (see average block times).

68

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L643
https://api.hiro.so/extended/v2/blocks/average-times

[L-11] Exit Fee Transfers Should Not Be
Bound To Vault Status

Location:

fee-collector-v1.clar#L23

Description The fee-collector-v1 contract accumulates exit fees paid by
vault users. The permissionless withdraw function is then used to transfer
the accumulated fees to the configured fee address.

withdraw performs an authorization check by calling state-v1::check-
transfer-auth :

(define-read-only (check-transfer-auth (asset principal))
 (begin
 (try! (check-is-vault-active))
 (asserts! (get-transfer-active) ERR_TRANSFER_DISABLED)
 (check-is-asset asset)
)
)

check-transfer-auth verifies that: (1) the asset is approved, (2) transfers
are enabled, and (3) the vault is currently active.

However, the vault-active requirement is not relevant in this context. The
exit fee has already been collected and should be transferable regardless
of the vault’s operational status. As a result, tying fee withdrawals to the
vault being active can unnecessarily block fee transfers.

Recommendation Replicate the relevant checks from state-v1::check-
transfer-auth while omitting the check-is-vault-active call.

Implementation-wise, add a helper in state-v1 , such as check-are-
transfers-active , that reverts with ERR_TRANSFER_DISABLED when transfers
are disabled. Then, in fee-collector-v1 , call check-are-transfers-active
followed by check-is-asset before executing the transfer.

69

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/fee-collector-v1.clar#L23

[L-12] Missing Transfer Authorization
Check in Reserve Fund Transfer

Location:

reserve-fund-v1.clar#L19-L28

Description The reserve-fund-v1 contract accumulates funds intended to
cover PnL losses.

Via the transfer function, approved protocol contracts can transfer any
asset passed to the function. However, the function does not verify that the
provided asset is approved, nor does it check the vault’s active state or
whether transfers are currently enabled.

Adding these checks would provide an additional security layer for the
protocol.

Recommendation In reserve-fund-v1::transfer , call state-v1::check-
transfer-auth for the provided asset contract.

70

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/reserve-fund-v1.clar#L19-L28

[L-13] Max Slippage Can Be Set for
Arbitrary Assets

Location:

state-v1.clar#L765-L775

Description
New assets are introduced into the codebase (deactivated by default) via a
request-new-asset call and are later activated via an activate-asset call,
which can only be executed by the protocol owner. Both steps are
required, and the call order is mandatory.

In the state-v1 contract, the owner can also update the slippage of an
existing asset by calling set-max-slippage . However, there is no validation
that the provided asset address corresponds to an asset that has been
previously requested/registered in the system. As a result, set-max-
slippage can be called with an arbitrary principal, creating or updating an
entry with invalid default values.

This occurs because set-max-slippage does not verify that the retrieved
entry (entry (get-asset address)) represents a real asset. Notably, get-
asset does not revert when the asset is missing; instead, it returns a
default struct with falsy/empty values:

(define-read-only (get-asset (address principal))
 (default-to

 { active: false, ts: none, price-feed-id: 0x, token-base: u0, max-slippage: u0, is-st
 (map-get? assets { address: address })
)
)

Because get-asset defaults to these values, setting a max slippage for any
arbitrary token will succeed and can introduce an erroneous map entry
such as:

{
 active: false, ts: none, price-feed-id: 0x, token-base: u0, max-slippage: <valid-slippage-a

71

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L765-L775

Recommendation
In state-v1::set-max-slippage , add a check that the asset entry exists (e.g.,
ensure ts is not none) and revert otherwise, similar to the validation
performed in activate-asset :

(ts (unwrap! (get ts entry) ERR_NO_ENTRY))

72

[L-14] Security Enhancements in Case of
Ownership Compromise

Location:

hq-hbtc-v1.clar
state-v1.clar

Description
In the event of an ownership key compromise, the protocol already
includes several security measures to mitigate risk.

Additional improvements could further strengthen the protocol by giving
users more time and opportunity to exit the system during a crisis.

Recommendation
Introduce a two-step mechanism (with a delay and a cancellation option)
for all owner-gated operations, especially those related to role
management.

For example:

Adding an admin is already a two-step procedure. In the event of a key
compromise, a malicious owner cannot immediately add new admins,
but can still remove existing ones.
Implement a two-step removal process as well, including a delay
between initiating and finalizing the removal, and allow cancellation of
both pending additions and removals.

Apply the same two-step add/remove mechanism to the guardian and
keeper roles. Currently, adding these roles does not follow a two-step
process; therefore, in extreme cases, a compromised owner could
immediately add malicious keepers or guardians.

With role changes protected by delays and cancellation, an ownership
compromise would be less impactful because competing actions (trusted
vs. malicious) could be canceled, preventing roles from changing hands.

73

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/hq-hbtc-v1.clar
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar

Finally, apply a similar “pending change + delay + cancel” pattern to
owner-changeable configuration parameters. This would ensure that all
configuration changes require a two-step process and can be canceled in a
single call, helping keep the system stable while users exit.

74

[L-15] Unnecessary Token Allowance on
Zest Operations With No Outflows

Location:

zest-interface-v1.clar#L60
zest-interface-v1.clar#L89

Description
In the zest-interface-v1 contract, several Zest v2 protocol functions are
invoked within an as-contract context even though they do not require
transferring any tokens from the caller. Instead, these operations result in
tokens flowing to the caller.

These cases include:

Removing collateral: the caller receives tokens.
Borrowing: the caller receives tokens.

In zest-collateral-remove :

(let ((remaining (try! (as-contract? ((with-all-assets-unsafe)) (try!
 (contract-call? market collateral-remove asset amount (some current-contract) none))))))

In zest-borrow :

(try! (as-contract? ((with-all-assets-unsafe)) (try!
 (contract-call? market borrow asset amount (some current-contract) none))))

In both cases, as-contract? is used with a with-all-assets-unsafe
allowance, granting unnecessary and unrestricted token access despite
there being no token outflow from the caller.

Recommendation
Update the as-contract? allowance to an empty allowance () in both zest-
borrow and zest-collateral-remove . Since these functions involve inflows

75

https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L60
https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L89

from the called interface rather than outflows, no token allowance is
required.

76

[L-16] Repaying Zest Debt May Leave
Dust in the Interface

Location:

zest-interface-v1.clar#L118

Description When a repayment on a Zest loan is initiated via the zest-
interface-v1::zest-repay function, an amount of tokens is first transferred
from the reserve contract, and the repayment is then executed using that
amount.

In theory, repayment can be performed on behalf of another user. In that
case, the market::repay function may cap the repayment amount and repay
only up to the outstanding debt, rather than reverting. This is a necessary
feature to avoid denial-of-service scenarios for external integrators (such
as Hermetica), where an attacker could pre-repay a minimal amount (e.g.,
1 micro unit) to cause subsequent repayments to revert.

However, the current implementation of the zest-repay function does not
account for the possibility that a portion of the transferred funds may
remain unused. As a result, leftover tokens (“dust”) may accumulate in the
interface contract, potentially requiring a sweep at a later time.

Recommendation If the repaid-amount is less than the asset amount
transferred from the reserve , return the leftover funds to the reserve.

77

https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L118

[L-17] Loose Token Allowances on Zest
Market Interface Calls

Location:

zest-interface-v1.clar#L36
zest-interface-v1.clar#L118
zest-interface-v1.clar#L145
zest-interface-v1.clar#L168

Description
In the zest-interface-v1 contract, several calls are made to the Zest market
(and vault) contracts that expect tokens to be withdrawn/consumed
during execution.

In zest-collateral-add :

(let ((total (try! (as-contract? ((with-all-assets-unsafe)) (try!
 (contract-call? market collateral-add asset amount none))))))

In zest-repay :

(let ((repaid-amount (try! (as-contract? ((with-all-assets-unsafe)) (try!
 (contract-call? market repay asset amount (some current-contract)))))))

In zest-deposit :

(received (try! (as-contract? ((with-all-assets-unsafe)) (try!
 (contract-call? vault deposit amount min-shares reserve)))))

In zest-redeem :

(received (try! (as-contract? ((with-all-assets-unsafe)) (try!
 (contract-call? vault redeem shares min-amount reserve)))))

In each case, the required amounts are first transferred from the reserve
contract and are then expected to be consumed by the subsequent call.

78

https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L36
https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L118
https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L145
https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L168

However, using with-all-assets-unsafe within the as-contract? asset
restriction permits arbitrary asset removals, even though the exact
(maximum) amounts to be withdrawn are known for these operations.

Recommendation
For each of the four functions (zest-collateral-add , zest-repay , zest-
deposit , and zest-redeem), replace with-all-assets-unsafe with an exact
with-ft allowance restriction to improve protocol safety.

Note that this change introduces a semantic difference. Without the
change, the transferred amount could be as low as u1 (the minimum to
avoid a revert), and the semantics would be:

an amount of assets to be taken from the reserve before executing the
operation, allowing any pre-existing token balance in zest-interface-v1
to be used by the operation (potentially avoiding the need for a sweep
call), although this scenario is unlikely.

If the proposed change is applied, the semantics become:

an amount of assets to be taken from the reserve before executing the
operation and the maximum amount of tokens that the specific
operation is allowed to consume. As a result, calls that rely on
consuming leftover assets already held by zest-interface-v1 would no
longer be possible, and intended sweep calls would be required to
manage such balances.

Finally, special care is required for STX wrapper contracts: they cannot use
with-ft because, at the implementation level, they transfer raw STX, which
requires a with-stx allowance.

79

8.4. QA Findings

[QA-01] Unnecessary External Call for is-
standard Verification

Location:

state-v1.clar#L533

Description The state-v1::set-fee-address function accepts a principal to
be used as the fee recipient. It currently calls hq-hbtc-v1::check-is-standard
to confirm that the provided principal is a standard principal.

This external contract call is unnecessarily costly, as check-is-standard only
performs a simple is-standard validation that can be executed locally
within the same contract.

Recommendation Remove the external check-is-standard call and replace
it with an inline is-standard check.

Example implementation:

+(define-constant ERR_NOT_STANDARD (err u102017))

(define-public (set-fee-address (address principal))
 (begin
 (try! (contract-call? .hq-hbtc-v1 check-is-owner contract-caller))
- (try! (contract-call? .hq-hbtc-v1 check-is-standard address))
+ (standard-ok (asserts! (is-standard address) ERR_NOT_STANDARD))
 (print { action: "set-fee-address", user: contract-caller, data: { old:
 (get-fee-address), new: address } })
 (ok (var-set fee-address address))
)
)

80

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L533

[QA-02] Current Owner Can Claim
Ownership Multiple Times

Location:

hq-hbtc-v1.clar#L248-L258

Description The protocol owner is changed using a standard two-step
ownership transfer process: the current owner first requests a new owner
via hq-hbtc-v1::request-new-owner , and the proposed owner then finalizes
the transfer via hq-hbtc-v1::claim-owner .

Unlike a typical two-step transfer, this implementation also enforces an
activation period that must elapse after the request before the new owner
can claim ownership.

However, claim-owner does not verify that ownership has not already been
claimed. As a result, the current owner can call claim-owner multiple times,
producing inconsistent or misleading event logs that may confuse off-
chain monitoring systems.

Recommendation In hq-hbtc-v1::claim-owner , add a check to ensure the
current owner is not already the next owner (i.e., prevent claiming if the
transfer has already been completed).

81

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/hq-hbtc-v1.clar#L248-L258

[QA-03] Current Owner Can Request Next
Ownership to Himself

Location:

hq-hbtc-v1.clar#L237-L246

Description Changing the protocol owner follows a standard two-step
ownership transfer process: the current owner first requests a new owner
via hq-hbtc-v1::request-new-owner , and the proposed owner then finalizes
the transfer by calling hq-hbtc-v1::claim-owner .

The current implementation does not validate that the requested new
owner principal is different from the current owner. As a result, the
current owner can request ownership to be transferred to himself,
effectively “resetting” the ownership request.

This scenario is most likely to occur due to operator error by a trusted
party and, at worst, could confuse third-party monitoring systems by
producing ambiguous ownership-transfer events.

Recommendation Add a check in hq-hbtc-v1::request-new-owner to ensure
the proposed next owner address is not equal to the current owner
address.

82

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/hq-hbtc-v1.clar#L237-L246

[QA-04] Incorrect Reuse of ERR_NOT_OWNER
Code When Claiming Ownership

Location:

hq-hbtc-v1.clar#L253

Description
When the next-in-line owner calls hq-hbtc-v1::claim-owner to claim
ownership, the function checks that the caller matches the recorded next-
address ; otherwise, it reverts:

(asserts! (is-eq next-address contract-caller) ERR_NOT_OWNER)

However, the revert uses the ERR_NOT_OWNER error code, which elsewhere in
the codebase indicates that an action was not performed by the current
owner.

In this context, that error code is misleading: the failure occurs because
the caller is not the designated next owner, not because the caller is not
the current owner.

Recommendation
Introduce a dedicated ERR_NOT_NEXT_OWNER error code constant and use it in
hq-hbtc-v1::claim-owner .

83

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/hq-hbtc-v1.clar#L253

[QA-05] Incorrect Event Action Name for
request-new-admin Function
Location:

hq-hbtc-v1.clar#L266

Description Relevant functions in the codebase emit events via the print
function following a consistent pattern, where the action field of the
emitted tuple matches the name of the function emitting it.

However, hq-hbtc-v1::request-new-admin emits an event with the action
request-admin-update , which does not match the function name.

Recommendation To maintain codebase uniformity and adhere to the
established event emission pattern, update the print statement so the
action field is set to request-new-admin .

84

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/hq-hbtc-v1.clar#L266

[QA-06] Optimize Double Timestamp
Retrieval

Location:

state-v1.clar#L445

Description The update-last-log-ts function updates last-log-ts with the
latest timestamp retrieved via get-current-ts from the previous block
information.

At present, the function calls get-current-ts twice—once to update the
value and once to log it—resulting in unnecessary overhead.

Recommendation

Retrieve the timestamp once and reuse it for both the update and the log.
Example implementation:

(define-private (update-last-log-ts)
 (let (
 (current (get-current-ts))
)
 (print { action: "update-last-log-ts", data: { old:
 (get-last-log-ts), new: current } })
 (var-set last-log-ts current)
)
)

85

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L445

[QA-07] Hardcode Constants Instead of
Computing at Runtime

Location:

controller-v1.clar#L13-L15
state-v1.clar#L45-L47
vault-v1.clar#L19-L20
hermetica-interface-v1.clar#L21

Description
The codebase uses (pow u10 uN) to define exponent-based constants (e.g.,
1eN). While functionally correct, using pow introduces unnecessary
runtime cost: it adds a fixed compute overhead during contract
deployment (in addition to the cost of the constant itself), and it also
increases runtime costs on subsequent contract loads.

This approach slightly increases block runtime usage at deployment time,
as shown below:

86

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/controller-v1.clar#L13-L15
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L45-L47
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/vault-v1.clar#L19-L20
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/hermetica-interface-v1.clar#L21

>> ::get_costs (define-constant usdh-base (pow u10 u8))
+----------------------+----------+------------+------------+
| | Consumed | Limit | Percentage |
|----------------------+----------+------------+------------|
| Runtime | 442 | 5000000000 | 0.00 % |
|----------------------+----------+------------+------------|
| Read count | 0 | 15000 | 0.00 % |
|----------------------+----------+------------+------------|
| Read length (bytes) | 0 | 100000000 | 0.00 % |
|----------------------+----------+------------+------------|
| Write count | 0 | 15000 | 0.00 % |
|----------------------+----------+------------+------------|
| Write length (bytes) | 0 | 15000000 | 0.00 % |
+----------------------+----------+------------+------------+
none
>> ::get_costs (define-constant usdh-base u100000000)
+----------------------+----------+------------+------------+
| | Consumed | Limit | Percentage |
|----------------------+----------+------------+------------|
|----------------------+----------+------------+------------|
| Runtime | 256 | 5000000000 | 0.00 % |
|----------------------+----------+------------+------------|
| Read count | 0 | 15000 | 0.00 % |
|----------------------+----------+------------+------------|
| Read length (bytes) | 0 | 100000000 | 0.00 % |
|----------------------+----------+------------+------------|
| Write count | 0 | 15000 | 0.00 % |
|----------------------+----------+------------+------------|
| Write length (bytes) | 0 | 15000000 | 0.00 % |
+----------------------+----------+------------+------------+
none

Recommendation
Where possible, replace (pow u10 uN) with the equivalent hardcoded uint
constant to avoid unnecessary runtime overhead.

- (define-constant usdh-base (pow u10 u8))
+ (define-constant usdh-base u100000000) // 1e8

87

[QA-08] Zest Interface Contract Can Be
Slightly Improved

Location:

zest-interface-v1.clar

Description
The zest-interface-v1 contract serves as a wrapper around Zest v2 market
and vault operations. While the contract is generally well written, a few
minor improvements could enhance consistency and reduce unnecessary
logic:

1. The reserve constant is defined to reference the reserve-v1 contract
principal: (define-constant reserve .reserve-v1) . However, the contract
inconsistently alternates between using this constant and directly
referencing the hardcoded contract principal.

Examples where the hardcoded contract principal is used (and where
the constant could be reused, noting that there are cases where it
cannot be reused):

zest-interface-v1.clar:L77
zest-interface-v1.clar:L113
zest-interface-v1.clar:L189
zest-interface-v1.clar:L231

The only two examples where the reserve constant is used:

zest-interface-v1.clar#L252-L253

To improve uniformity, either use the constant everywhere it is
applicable, or remove it and consistently use the direct reserve-v1
contract principal.

2. Zest vault interaction functions— zest-deposit , zest-redeem —as well
as collateral addition via zest-collateral-add do not require price feed

88

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L77
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L113
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L189
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L231
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L252-L253
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L176-L179
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L218-L220
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L37-L39

updates. As a result, the price-feed-* handling in these functions is
redundant.

Removing this logic would simplify the external interface and slightly
reduce execution fees.

3. Consider adding event fields to indicate whether a price update was
provided.

For functions where price feeds may be supplied, consider including
in the printed event data whether each feed was provided. This
would improve off-chain monitoring without materially increasing
execution size.

Example event fields:

price-feed-1: (if (is-some price-feed-1) true false),
price-feed-2: (if (is-some price-feed-2) true false)

Recommendation
Apply the changes above to improve consistency, simplify the interface,
and enhance observability of the Zest interface contract.

89

[QA-09] Excessive Price Feed Updates in
Trading Interface

Location:

trading-v1.clar

Description The trading-v1 contract is a trading wrapper that calls
functions from the hermetica-interface-v1 and zest-interface-v1 contracts.

The zest-interface-v1 contract allows updating Pyth prices for up to two
feeds via optional parameters. Updating a Pyth price feed is costly even if
fees have already been processed in the same block, because the feed data
must still be parsed.

Currently, trading-v1 does not check whether a prior call to the Zest
interface has already updated the price feeds. As a result, it repeatedly
passes price feed data and triggers redundant updates across chained Zest
interactions.

Breakdown of price feed updates per trading-v1 function:

zest-open : 1 feed update (expected)
zest-close : 1 feed update (expected)
zest-open-add : 2 duplicate feed updates (once in zest-collateral-add , and
again in zest-open)
zest-close-remove : 2 duplicate feed updates (once in zest-close , and
again in zest-collateral-remove)
zest-open-add-deposit : 3 duplicate feed updates (in zest-deposit , zest-
collateral-add , and zest-open)
zest-close-remove-redeem : 3 duplicate feed updates (in zest-close , zest-
collateral-remove , and zest-redeem)

Each redundant feed update significantly increases execution costs and
should be avoided.

90

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/trading-v1.clar

Recommendation For functions that currently trigger duplicate updates,
pass price-feed-1 and price-feed-2 only to the first internal call where
they are accepted. For subsequent internal calls in the same flow, pass
none for these parameters to prevent redundant price feed parsing and
updates.

91

[QA-10] Trading Interface: Ambiguous
Function Naming Convention

Location:

trading-v1.clar#L89-L107
trading-v1.clar#L177-L200

Description
The trading-v1 contract implements multiple functions that interact with
both the Zest and Hermetica interfaces. These functions are generally
named after the operations they perform, in the order those operations
occur.

Examples of function names and the corresponding sequence of
operations:

zest-open : opens a position on Zest by borrowing USDh from the Zest
market and staking it in Hermetica.
zest-close : closes a position on Zest by unstaking sUSDh from Hermetica
and repaying USDh to the Zest market.
zest-close-remove : (1) closes a Zest position and (2) removes collateral
from the Zest market.
zest-close-remove-redeem : (1) closes a Zest position, (2) removes
collateral from the Zest market, and (3) redeems Zest vault shares.

While the functions above follow a consistent naming convention that
reflects the operation order, zest-open-add and zest-open-add-deposit do
not:

zest-open-add : (1) adds collateral to the Zest market and (2) opens a Zest
position.
zest-open-add-deposit : (1) deposits into the Zest vaults, (2) adds
collateral to the Zest market, and (3) opens a Zest position.

Recommendation
Rename the functions (and their corresponding event action values) to

92

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/trading-v1.clar#L89-L107
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/trading-v1.clar#L177-L200

reflect the actual order of operations:

Rename zest-open-add to zest-add-open .
Rename zest-open-add-deposit to zest-deposit-add-open .

93

[QA-11] Trading Interface Can Be
Optimized

Location:

trading-v1.clar#L29-L69

Description The trading-v1 contract implements several functions that
support both the Zest and Hermetica interfaces. These functions perform
multiple logical operations and ultimately call either zest-open or zest-
close .

Specifically:

zest-open-add and zest-open-add-deposit call zest-open
zest-close-remove and zest-close-remove-redeem call zest-close

All of these functions are public, including zest-open and zest-close , and
therefore include authorization and input validation checks.

This call pattern introduces unnecessary execution overhead because
checks performed in the calling public functions are repeated again inside
zest-open and zest-close (e.g., check-is-trader and amount validations).

Recommendation Refactor zest-open into two functions:

Introduce an internal function (e.g., zest-open-internal) that contains the
core logic for calling zest-interface-v0-2 and hermetica-interface-v1 , but
does not perform authorization/amount checks or emit print events.
Keep zest-open as the public entry point, performing the required
authorization and amount checks, then delegating execution to zest-
open-internal . After the internal call, emit zest-open -specific print events.
Update other local functions that currently call zest-open to call zest-
open-internal instead, avoiding redundant checks.

Apply the same approach to zest-close . This removes duplicated
validation overhead and ensures print events are emitted from the public

94

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/trading-v1.clar#L29-L69

zest-open and zest-close functions, which are currently missing them.

95

[QA-12] Vault Deposit Cap Consideration
Location:

vault-v1.clar#L85

Description The current vault implementation enforces a maximum, pre-
set deposit cap:

(asserts! (<= (+ (get total-assets state) assets)
 (get deposit-cap state)) ERR_DEPOSIT_CAP_EXCEEDED)

In this case, the cap is checked against total-assets , which includes
pending claims (amount reserved for users’ pending claims), pending fees
(amount reserved for protocol fees), the pending reserve fund (amount to
be transferred to the reserve fund), and net assets (the only stationary
funds within the system).

As a result, applying the deposit cap to the entire total-assets value may
be overly restrictive if the intent is to limit only user-owned protocol
funds.

Recommendation Depending on the protocol’s business logic, consider
applying the cap to net assets plus pending claims (i.e., funds that are
user-bound). Otherwise, explicitly acknowledge and accept the current
behavior.

96

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/vault-v1.clar#L85

[QA-13] Management Fee Max Amount
Implementation – Documentation
Discrepancy

Location:

state-v1.clar#L32

Description
The current documentation states that the management fee has a
maximum allowed value of 54, as shown below:

Setting
Current
Value

Description Max Value

Management
Fee

0 bps
(0.00%)

Daily management
fee on total assets

54 % of bps
(0.0054%)

This is described as corresponding to a 2% annualized fee:

Limit Value Description

Max
Management
Fee

54 % of bps
(0.0054%)

Maximum daily management
fee (2% annualized)

However, annualizing a daily fee of 0.0054% over a 365-day year results
in an effective annual fee of approximately 1.971%, which does not reach
the documented 2%.

By comparison, using 55 % of bps (0.0055%) as the maximum daily fee
would yield an annualized fee of approximately 2.0075% over 365 days.

As a result, the current maximum annualized fee of ~1.971% (at 54)
deviates from the documented 2% target, which may be material at higher
TVL.

97

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L32

Recommendation
Either:

Update the protocol documentation to reflect a maximum annualized
management fee of approximately 1.971%, or
Increase the in-code maximum to 55, which corresponds to
approximately 2.0075% annualized and more closely matches the
documented 2% target.

98

[QA-14] Vault Contract Can Be Slightly
Improved

Location:

vault-v1.clar#L106
vault-v1.clar#L232

Description
The vault-v1 contract manages all hBTC vault operations. While the
contract is generally well written, it can be slightly improved in the
following areas:

1. Remove unused assets-net computation

During user withdrawals or redemptions, the create-claim function
updates the claims map and the global state.

At the beginning of this function, the variable assets-net is computed as
(assets-net (- assets fee)) . However, this value is not used anywhere in
the subsequent claim-creation logic and can be removed to reduce
unnecessary computation and improve clarity.

2. Improve the fund-claim cooldown check

The fund-claim function allows execution if it is either called by the
manager role or the claim is outside the cooldown period:

(define-public (fund-claim (claim-id uint))
 (let (
 ;; ... code ...
 (is-cooled-down (>= (get-current-ts) (get ts claim)))
 (is-manager (get manager
 (contract-call? .hq-hbtc-v1 get-keeper contract-caller)))
)
 ;; ... code ...
 (if is-manager true (
 ifis-managertrue

)

99

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/vault-v1.clar#L106
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/vault-v1.clar#L232

This if expression can be rewritten as a single, more readable asserts!
statement:

- (if is-manager true
- (asserts! is-cooled-down ERR_NOT_COOLED_DOWN)) ;; if the caller is a manager, skip the coold
+ (asserts! (or is-manager is-cooled-down) ERR_NOT_COOLED_DOWN)

Recommendation
Apply the changes above to the vault contract.

100

[QA-15] First Depositor Inflation Attack
Considerations

Location:

vault-v1.clar

Description Smart contract vaults have a well-known set of typical issues.

One such issue is that share calculations for deposits into an empty vault
can allow the first depositor to inflate the share price. This can enable an
attacker to extract value from subsequent depositors via a known
variation of the first depositor attack, which can apply even if the vault
accounts for direct deposits.

Through repeated, carefully chosen dust deposits and withdrawals, an
attacker can exponentially inflate the shares-to-assets ratio such that 1
unit of shares becomes significantly more valuable. This can cause future
deposits to round down substantially, allowing the attacker to capture the
rounded-down amount.

Note that this attack requires the first depositor to wait until the vault’s
share price diverges from the initial 1:1 ratio.

The current vault design mitigates this issue by enforcing a maximum
price divergence mechanism, making the attack unfeasible.

However, even with a divergence mechanism in place, corner cases related
to rounding may still exist and can be fully eliminated.

Recommendation

Document the following procedure and execute it at deployment:

After deployment, have the team deposit an initial amount of assets and
transfer dust (e.g., 1000 LP nano units) to an inaccessible address (e.g.,
SP000000000000000000002Q6VF78) that will never be burned.

101

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/vault-v1.clar
https://x.com/kankodu/status/1771229163942474096
https://x.com/kankodu/status/1771229163942474096

An on-chain alternative is to lock a minimum LP amount on the first
deposit to ensure no problematic rounding behavior. This can be
implemented using an initialization-gated variable and transferring the
locked amount directly to a burn address, e.g.: (define-constant NULL-
ADDRESS (unwrap-panic (principal-construct? (if is-in-mainnet 0x16 0x1a)

0x00))) .

The overhead of an on-chain implementation is not justified in this case,
provided the price deviation threshold is kept low during vault
deployment.

However, please document and execute the procedure described above
after deployment.

102

[QA-16] Add Vault Action Preview
Functions

Location:

vault-v1.clar

Description The vault-v1 contract implements a deposit function for
inflows and two functions for outflows: init-withdraw and init-redeem .

Because vault rounding must differ depending on whether an asset-to-
share conversion occurs during deposit versus during withdrawal
initialization, third parties need a way to accurately preview these
operations. Typically, four preview functions are used:

previewDeposit : calls the existing convert-to-shares function with
rounding down
previewMint : similar to deposit, but allows users to deposit the amount
required to receive a specific number of shares. In this case, convert-to-
assets would be called with rounding up. This variation is not
implemented in the current vault contract and can be ignored.
previewWithdraw : calls convert-to-shares with rounding up. This should
match the behavior of init-withdraw (after the rounding fix).
previewRedeem : calls convert-to-assets with rounding down

Of these, previewDeposit , previewWithdraw , and previewRedeem are relevant
and should be implemented in the vault to support third-party integrators.

Recommendation Modify the convert-to-shares function to accept a
boolean parameter indicating whether to round up. Then implement the
three preview functions— previewDeposit , previewWithdraw , and
previewRedeem —each calling the appropriate conversion function with the
correct rounding behavior.

These read-only functions can also be reused internally (e.g., calling
previewDeposit from deposit) to simplify and centralize the logic.

103

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/vault-v1.clar

[QA-17] Codebase Print Statements
Improvements

Location:

controller-v1.clar#L124
controller-v1.clar#L158
controller-v1.clar#L198
state-v1.clar#L384
trading-v1.clar#L250
hermetica-interface-v1.clar#L91
zest-interface-v1.clar#L191
zest-interface-v1.clar#L233
state-v1.clar#L500
hbtc-token.clar#L52

Description
Across the codebase, several event print statements could be improved
for consistency and completeness:

1. In controller-v1 , include the case field within the data section to avoid
deviating from the general print pattern used throughout the codebase.

2. In state-v1::check-max-deviation , the user field is missing, even though it
is present in other print events. Notably, this is also the only read-only
check -type function that emits an event. Consider whether this print is
necessary at all.

3. In trading-v1::zest-close-remove-redeem , consider adding min-sbtc-amount
to the print data section.

4. In hermetica-interface-v1::hermetica-unstake-and-withdraw , the print data
section includes both usdh-expected and usdh-received , but they are
identical. Consider keeping only one of these fields in the emitted event.

5. In zest-interface-v1::zest-deposit , consider adding min-shares to the
print data section.

6. In zest-interface-v1::zest-redeem , consider adding min-amount to the print
data section.

104

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/controller-v1.clar#L124
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/controller-v1.clar#L158
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/controller-v1.clar#L198
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L384
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/trading-v1.clar#L250
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/hermetica-interface-v1.clar#L91
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L191
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L233
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar#L500
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/tokens/hbtc-token.clar#L52

7. In state-v1::update-state , for the commit-reward print, update the return
field to contain the reward data directly, and rename the field to
something more appropriate.

8. In hbtc-token::transfer , consider using stacks-block-height instead of
burn-block-height for the block-height entry in the print data section.

Recommendation
Apply the indicated logging improvements.

105

[QA-18] Miscellaneous Codebase
Improvements

Location:

controller-v1.clar#L118
controller-v1.clar#L131
state-v1.clar
hq-hbtc-v1.clar#L309-L317
reserve-fund-v1.clar#L19-L28

Description
Across the codebase, there are several opportunities for minor
improvements that would increase execution efficiency, improve
readability, and add additional (non-critical) input validation.

Recommendation

Apply the following changes:

1. In controller-v1::handle-profit , the expression (+ perf-fee mgmt-fee)
is computed twice. Store the result in a let binding and reuse it.

2. In state-v1 , the functions update-total-assets , update-pending-claims ,
update-pending-fees , and update-pending-rf all follow a var-set
pattern. In their print statements, avoid re-calling the corresponding
get-* function. Instead, compute the new value once in a let binding
and reuse it for both var-set and print . This reduces read counts per
operation.

3. In state-v1::update-state , cache the get-share-price result (e.g., near
the end of the function) and reuse it in both the check-max-deviation
call and the print statement. This avoids an extra get-share-price call.

4. Update state-v1::check-trading-auth to be read-only .

106

https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/controller-v1.clar#L118
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/controller-v1.clar#L131
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/state-v1.clar
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/hq-hbtc-v1.clar#L309-L317
https://github.com/hermetica-fi/hermetica-contracts/blob/43fff97fdecd8c3a2c2fc5b6070967fad4aac28f/contracts/hbtc/protocol/reserve-fund-v1.clar#L19-L28

5. Add an is-standard check (to ensure the provided address belongs to
the current network—mainnet vs. testnet) in:

hq-hbtc-v1::request-new-protocol for the address principal,
state-v1::request-new-contract for the address principal, and
reserve-fund-v1::transfer for the recipient principal.

6. The documentation states that the guardian role can modify the
deposit cap:

Guardian: The guardian is a trusted and neutral third party
with a public reputation. Guardians can freeze deposits and
withdrawals, set deposit-cap, force unwinds.

However, the guardian cannot currently modify the deposit cap. This
capability also appears unnecessary, as the guardian can directly
disable deposits. Update the documentation to reflect the
implemented behavior.

107

https://docs.stacks.co/reference/clarity/functions#is-standard

[QA-19] Hermetica Interface Mint Asset
Transfer Restriction Can Be Improved

Location:

hermetica-interface-v1.clar#L118

Description In the hermetica-interface-v1::hermetica-mint function, when
calling the auto-minting contract, a with-all-assets-unsafe clause is used.
This is done because the amount of minting-asset tokens that must be
consumed to mint the requested amount-usdh is not known in advance.

However, hermetica-mint first transfers a fixed amount of tokens from the
reserve (amount-assets), which effectively serves as the maximum amount
allocated for the mint.

Since amount-assets semantically represents the intended maximum
amount to be spent, the with-all-assets-unsafe clause can be replaced with
a more restrictive with-ft allowance for minting-asset . This ensures that
no additional tokens can be consumed beyond the intended limit.

Recommendation Replace the with-all-assets-unsafe clause in hermetica-
interface-v1::hermetica-mint with a with-ft allowance for minting-asset
and amount-assets .

Additionally, because the minting-auto contract performs a Pyth price
decode that charges a fee, a with-stx allowance is also required. To
determine this allowance, one approach is to store the Pyth fee calculation
parameters in the Hermetica interface contract and compute a pyth-fee-
amount-allowance from them. Alternatively, add a dedicated parameter to
hermetica-mint to supply the required STX allowance.

Example implementation:

(try! (as-contract? ((with-ft minting-asset "*" amounts-assets)
 (with-stx pyth-fee-amount-allowance)) (try! (contract-call? minting-auto mint minting-asset

108

https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/hermetica-interface-v1.clar#L118

Note that this change also introduces a semantic shift. Without the change,
amount-assets could be set to u1 (minimum to avoid reverting), and
semantically it would represent:

the amount of assets to be taken from the reserve before executing the
mint. This allows any previously leftover token balance in the contract to
be used for minting (reducing the need for a sweep call).

If the proposed change is applied, amount-assets would instead represent:

the amount of assets to be taken from the reserve before executing the
mint and the maximum amount of tokens allowed to be consumed by
the minting-auto::mint call. As a result, after the change, hermetica-mint
calls can no longer rely on leftover assets held by the hermetica-
interface-v1 contract, and explicit sweep calls would be required when
that behavior is desired.

Finally, special care is required for STX wrapper contracts: they cannot be
handled via a with-ft allowance because, at the implementation level,
they transfer raw STX and therefore require a with-stx allowance.

109

[QA-20] Use the Recipient Feature of the
Zest Market Interface

Location:

zest-interface-v1.clar#L60-L61
zest-interface-v1.clar#L88-L92

Description
The updated Zest market interface supports specifying a recipient address
for funds when removing collateral and borrowing assets.

However, the zest-collateral-remove and zest-borrow functions in zest-
interface-v1 currently use the interface contract itself as the recipient, and
then transfer the funds to the reserve contract afterward.

In zest-collateral-remove :

(let ((remaining (try! (as-contract? ((with-all-assets-unsafe)) (try!
 (contract-call? market collateral-remove asset amount (some current-contract) none))))))
 (try! (contract-call? asset transfer amount current-contract reserve none))

In zest-borrow :

;; Borrow from Zest market (debt recorded under this interface contract)
(try! (as-contract? ((with-all-assets-unsafe)) (try!
 (contract-call? market borrow asset amount (some current-contract) none))))

;; Transfer borrowed tokens to reserve
(try! (contract-call? asset transfer amount current-contract reserve none))

In both cases, (some current-contract) is passed as the recipient, causing
funds to be received by the current contract and then moved to the reserve
via a subsequent SIP10:transfer .

Recommendation
In zest-collateral-remove and zest-borrow , pass the reserve contract
directly as the recipient instead of (some current-contract) , and remove the
follow-up transfer call.

110

https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L60-L61
https://github.com/hermetica-fi/hermetica-contracts/blob/d5e23b4d627a2034175d6038bf05731a6b5e3aa7/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar#L88-L92

[QA-21] Use Zest Market Bundle
Operations

Location:

zest-interface-v1.clar
trading-v1.clar
zest-market-trait-v1.clar

Description
The Zest market contract exposes two helper functions that can simplify
the logic in trading-v1 by bundling common multi-step operations into
single calls:

market::supply-collateral-add

;; -- Supply and collateral-add for topping up ztoken collateral
;; Deposits underlying token
 (STX, sBTC, USDC, etc.) to a vault, receives zTokens,
;; and adds those zTokens as collateral - all in one transaction.
(define-public (supply-collateral-add (ft <ft-trait>) (amount uint)
 (min-shares uint) (price-feeds (optional (list 3 (buff 8192)))))

and

market::collateral-remove-redeem

;;
 -- Collateral-remove and redeem for withdrawing underlying from ztoken collateral
(define-public (collateral-remove-redeem (ft <ft-trait>) (amount uint)
 (min-underlying uint) (receiver (optional principal)) (price-feeds (optional (list 3 (buff 8

Within the trading-v1 contract, zest-deposit-add-open performs the
following sequence:

;; Step 1: Deposit collateral to vault and get z-tokens
;; Step 1b: Add z-tokens as collateral to Zest market
;; Validate that borrow token is the canonical borrow token
;; Borrow asset from Zest v2 market
;; Stake the borrowed asset into Hermetica

111

https://github.com/hermetica-fi/hermetica-contracts/blob/master/contracts/hbtc/protocol/interfaces/zest-interface-v1.clar
https://github.com/hermetica-fi/hermetica-contracts/blob/master/contracts/hbtc/protocol/trading-v1.clar
https://github.com/hermetica-fi/hermetica-contracts/blob/master/contracts/hbtc/traits/zest-market-trait-v1.clar

Currently, Step 1 and Step 1b are implemented as two separate calls to the
Zest interface:

;; Step 1: Deposit collateral to vault and get z-tokens
(z-tokens-received (try!
 (contract-call? .zest-interface zest-deposit vault collateral-token collateral-amount min-sh

;; Step 1b: Add z-tokens as collateral to Zest market
(try!
 (contract-call? .zest-interface zest-collateral-add market vault z-tokens-received price-fee

These two steps can be reduced to a single call by using market::supply-
collateral-add .

Similarly, in the trading contract, zest-close-remove-redeem performs the
reverse operations:

;; Unstake asset from Hermetica (instant withdrawal)
;; Repay loan to Zest v2 market
;; Step 2: Remove z-token collateral
;; Step 3: Redeem collateral from vault
 (burn z-tokens, get actual collateral amount)

Step 2 and Step 3 can also be combined into a single call by using
market::collateral-remove-redeem .

Recommendation
In zest-interface-v1 , implement wrapper functions for market::supply-
collateral-add and market::collateral-remove-redeem , and then use these
wrappers in trading-v1::zest-deposit-add-open and trading-v1::zest-close-
remove-redeem to reduce execution costs.

Additionally, update the zest-vault-trait-v1 trait to include the two new
functions.

112

