
HERMETICA USDH MINTING CONTRACT SECURITY REVIEW

Conducted by:
KRISTIAN APOSTOLOV, ALIN BARBATEI (ABA)

MARCH 20TH, 2025

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

2

Clarity Alliance is a team of expert whitehat hackers specialising in
securing protocols on Stacks.

They have disclosed vulnerabilities that have saved millions in
live TVL and conducted thorough reviews for some of the largest
projects across the Stacks ecosystem.

Learn more about Clarity Alliance at clarityalliance.org.

1. About Clarity Alliance

http://clarityalliance.org

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

3

This report is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. This report is not, nor
should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts
Clarity Alliance to perform a security assessment.

This report does not provide any warranty or guarantee regarding
the absolute bug-free nature of the technology analyzed, nor do
they provide any indication of the technologies proprietors, business,
business model or legal compliance.

This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report
in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive
assessing process intending to help our customers increase the
quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level
of ongoing risk. Clarity Alliance’s position is that each company and
individual are responsible for their own due diligence and continuous
security. Clarity Alliance’s goal is to help reduce the attack vectors and
the high level of variance associated with utilizing new and consistently
changing technologies, and in no way claims any guarantee of security
or functionality of the technology we agree
to analyze.

The assessment services provided by Clarity Alliance are subject to
dependencies and under continuing development. You agree that your
access and/or use, including but not limited to any services, reports,
and materials, will be at your sole risk on an as-is, where-is, and as-
available basis.

Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. The assessment reports
could include false positives, false negatives, and other unpredictable
results. The services may access, and depend upon, multiple layers of
third parties. Notice that smart contracts deployed on the blockchain
are not resistant from internal/external exploit. Notice that active
smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Clarity Alliance does
not guarantee the explicit security of the audited smart contract,
regardless of the verdict.

2. Disclaimer

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

4

3. Introduction
A time-boxed security review of Hermetica USDh, where Clarity
Alliance reviewed the scope and provided insights on improving the
protocol.

4. About Hermetica USDh
Hermetica’s USDh is the first Bitcoin-backed synthetic dollar that
yields up to 25%.

The Hermetica protocol couples spot BTC with a short perpetual
futures position to create a synthetic dollar that is native to Bitcoin
L1 and L2s.

Staked USDh, a Bitcoin backed, yield instruments accrues daily
yields from perpetual futures funding rates.

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

5

5.1 Impact

•	 High - leads to a significant material loss of assets in the
protocol or significantly harms a group of users.

•	 Medium - only a small amount of funds can be lost (such as
leakage of value) or a core functionality of the protocol is
affected.

•	 Low - can lead to any kind of unexpected behavior with some
of the protocol’s functionalities that’s not so critical.

5.2 Likelihood

5.3 Action required for severity levels

•	 High - attack path is possible with reasonable assumptions
that mimic on-chain conditions, and the cost of the attack is
relatively low compared to the amount of funds that can be
stolen or lost.

•	 Medium - only a conditionally incentivized attack vector, but
still relatively likely.

•	 Low - has too many or too unlikely assumptions or requires a
significant stake by the attacker with little or no incentive.

•	 Critical - Must fix as soon as possible (if already deployed)
•	 High - Must fix (before deployment if not already deployed)
•	 Medium - Should fix
•	 Low - Could fix

5. Risk Classification

Severity

Likelihood: High

Likelihood: Medium

Impact: High

Critical

High

Impact: Medium

High

Medium

Impact: Low

Medium

Low

Likelihood: Low Medium Low Low

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

6

6. Security Assessment Summary

The following contract was in the scope of the security review:

Initial Commit Reviewed:
2d51015b223b844f9c3ed026669a97b1b594d41b

Final Commit After Audit Remediations:
863ab5f468ba5e76e4cc70721332f23d2884388e

contracts/protocol/minting-auto-v1.clar•	

Scope

https://github.com/hermetica-fi/hermetica-contracts/commit/2d51015b223b844f9c3ed026669a97b1b594d41b
https://github.com/hermetica-fi/hermetica-contracts/commit/863ab5f468ba5e76e4cc70721332f23d2884388e

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

7

7. Executive Summary
Over the course of the security review, Kristian Apostolov, Alin
Barbatei (ABA) engaged with - to review Hermetica USDh. In this
period of time a total of 13 issues were uncovered.

Protocol Summary

Findings Count

Protocol Name

Severity

Total Findings 13

Amount

Date

Hermetica USDh

March 20th, 2025

Low

8

Medium

High

QA

1

2

2

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

8

[H-01] Deprecated Pyth Oracle Version Is
Used Resolved

[H-02] Hardcoded Pyth Price Exponent Resolved

[M-01] Pyth Price Confidence Is Not
Validated Resolved

[M-02] Redeeming Incorrectly Consumes
Minting Allowance Resolved

[L-01] Avoid Using tx-sender for Caller
Identification Resolved

[QA-01] Absence of Events for Critical Actions Resolved

[QA-02] Typographical Error Resolved

[QA-03] Redundant Tuple with a Single
Element as Map Key Acknowledged

[QA-04] Simplification of set-supported- asset Resolved

[QA-05] Implement Standard Checks for All
Saved Principals Resolved

[QA-06] Unused Redeem Memo Argument Resolved

[QA-07] Missing Required USDh Amount
Validation Resolved

[QA-08] Slippage Mechanism Is Ineffective
Against Price Fluctuations Acknowledged

Summary of Findings

ID Title Severity Status

Low

Medium

Medium

High

High

QA

QA

QA

QA

QA

QA

QA

QA

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

9

Description

[H-01] Deprecated Pyth Oracle Version Is
Used

8.1. High Findings

8. Findings

In the			 contract, minting and redeeming can be
performed using either the default 1:1 ratio or the Pyth Pull Oracle.

The Pyth contract currently in use,
								 , has been
deprecated and archived since January 2025:

This repo has been ARCHIVED. Please see
https://github.com/Trust-Machines/stacks-pyth-bridge for the
Stacks Pyth bridge.

Using this outdated, unaudited, and unmaintained contract may lead to the
use of invalid price data.

minting-auto-v1

‘SP2T5JKWWP3FYYX4YRK8GK5BG2YCNGEAEY2P2PKN0.pyth-oracle-v2

Recommendation
Adopt the latest Pyth deployment contracts from the new
 repository.

stacks-pyth-

bridge

https://github.com/hirosystems/stacks-pyth-bridge/tree/main
https://github.com/Trust-Machines/stacks-pyth-bridge?tab=readme-ov-file#latest-deployments
https://github.com/Trust-Machines/stacks-pyth-bridge?tab=readme-ov-file#latest-deployments

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

10

Description

[H-02] Hardcoded Pyth Price Exponent

In the			 contract, minting and redeeming can
be performed using either the default 1:1 ratio or the Pyth Pull Oracle.

The Pyth integration is defined as follows:

minting-auto-v1

(decoded-price
(match price-feed-bytes value
(element-at (try!
(contract-call? ‘SP2T5JKWWP3FYYX4YRK8GK5BG2YCNGEAEY2P2PKN0.pyth-oracle-v2
decode

(
some{conf:u0,
ema-conf:u0,
ema-price:0,
expo:0,
prev-publish-time:u0,
price:

), price-identifier: 0x00, publish-time: (+ block-timestamp u1
)

)
(price (to-uint (unwrap-panic (get price decoded-price))))

A significant issue exists in the current implementation of the protocol.
The Pyth decoded price information returns an exponent () and a
	 variable, but the actual price is determined by combining the two
as indicated in their official documentation.

Since the minter contract directly uses the	 element, it utilizes an
incorrect price that does not account for decimals or the exponent. The
current implementation also mistakenly assumes that the
() represents the price decimals.

Using an incorrect price will drastically alter the minted amount of tokens.

expo

price

price

oracle-base

10^8

Recommendation
Convert the returned decoded price data to an		 decimal
value, if necessary, by checking against the	 variable.

An example of a Pyth price conversion function can be found in the Granite
Protocol pyth-adapter.

oracle-base

expo

https://docs.pyth.network/price-feeds/best-practices#fixed-point-numeric-representation
https://docs.pyth.network/price-feeds/best-practices#fixed-point-numeric-representation
https://github.com/GraniteProtocol/core-v1/blob/82737a812c05b4931b28974909bc3ad575e20e56/contracts/modules/pyth-adapter-v1.clar#L145-L153

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

11

Description

8.2. Medium Findings

Recommendation
In the			 , implement a maximum confidence
threshold (price/confidence) that is adjustable and checked when
retrieving the price. Note that a confidence interval of 0 implies no spread
in price and should be considered a valid price.

An example of a Pyth confidence interval check can be found in the
Granite project’s pyth-adapter.

[M-01] Pyth Price Confidence Is Not
Validated

In the			 contract, minting and redeeming can be
performed using either the default 1:1 ratio or the Pyth Pull Oracle.

The Pyth integration is defined as follows:

minting-auto-v1

(decoded-price
(match price-feed-bytes value
(element-at (try!
(contract-call? ‘SP2T5JKWWP3FYYX4YRK8GK5BG2YCNGEAEY2P2PKN0.pyth-oracle-v2
decode

(
some{conf:u0,
ema-conf:u0,
ema-price:0,
expo:0,
prev-publish-time:u0,
price:

), price-identifier: 0x00, publish-time: (+ block-timestamp u1
)

)
(price (to-uint (unwrap-panic (get price decoded-price))))

Prices returned by the Pyth Network include a level of uncertainty,
represented by a confidence interval.

Currently, the contract implementation does not validate the confidence
level. It is essential to validate the confidence level to ensure that the price
returned by the network falls within an acceptable range.

For example, a price for of with a confidence of	 may be
returned. In this scenario, the network is uncertain of the exact price,
placing it within a	 range.

Such a situation, while highly irregular, is still possible and could lead to
financial loss for users if this price is used in collateral evaluation.

STX $3 ± $2

[$1, $5]

minting-auto-v1

https://github.com/GraniteProtocol/core-v1/blob/82737a812c05b4931b28974909bc3ad575e20e56/contracts/modules/pyth-adapter-v1.clar#L126-L131
https://docs.pyth.network/price-feeds/best-practices#confidence-intervals

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

12

Description

[M-02] Redeeming Incorrectly Consumes
Minting Allowance

When 	 is minted using the			 function,
the minted amount is correctly subtracted from the current minting time
window:

Recommendation

USDh minting-auto-v1::mint

(ok (var-set current-mint-limit (-
(get-current-mint-limit) amount-usdh-requested)))

However, when assets are redeemed by burning , the mint limit is
incorrectly reduced again.

This incorrect reduction of the limit during redemptions can prevent
minters from minting additional tokens within the same window.
Additionally, redeemers may face unnecessary delays, having to wait until
the next time window to redeem their tokens.

USDh

Remove the line
				 from the
function.

(var-set current-mint-limit (- (get-current-mint-

limit) amount-usdh-requested))) minting-auto-v1::redeem

https://github.com/hermetica-fi/hermetica-usdh-contracts-dev/blob/5499ba918d3d382e076f6ce78417df7b7c6bb6f0/contracts/prod/protocol/minting-auto-v1.clar#L228
https://github.com/hermetica-fi/hermetica-usdh-contracts-dev/blob/5499ba918d3d382e076f6ce78417df7b7c6bb6f0/contracts/prod/protocol/minting-auto-v1.clar#L228

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

13

Description

[L-01] Avoid Using			 for Caller
Identification

8.3. Low Findings

Within the contract, there are several instances where 	 is used
instead of		 or passing the caller’s address.

This practice can lead to situations where minters or administrators, who
fall victim to phishing scams, might unknowingly interact with malicious
contracts. This could result in the execution of sensitive operations within
the codebase.

For instance, if a minter interacts with a malicious contract, that contract
could potentially mint tokens on their behalf using the 			
	 function.

It is important to note that such scenarios can only occur due to
negligence on the part of the minter.

tx-sender

tx-sender

contract-caller

minting-auto-

v1::mint

Recommendation
Replace all instances of	 with		 , except within
the SIP-10	 function.

tx-sender contract-caller

transfer

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

14

8.4. QA Findings

Description

Recommendation
Incorporate a 	 command to log both the previous and new values
(where applicable) for all admin-restricted functions:			 ,
				 ,		 ,			 ,
		 , and			 .

[QA-01] Absence of Events for Critical
Actions

In the 			 contract, when a significant variable
is updated, no event is emitted to notify off-chain monitoring systems.

The absence of events complicates protocol tracking for any third-party
systems.

minting-auto-v1

print

set-mint-limit

set-mint-limit-reset-window set-block-delay set-whitelist set-

custody-address set-supported-asset

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

15

[QA-02] Typographical Error

Description
In the 		 	 contract, there is a typographical error in the
comment preceding the 	 function. The word 		 should be
corrected to 		 .

minting-auto-v1

Redemer

Redeemer

redeem

Recommendation
Correct the typographical error as indicated.

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

16

Description

[QA-03] Redundant Tuple with a Single
Element as Map Key

In the			 contract, there is a map of supported assets:minting-auto-v1

Recommendation
Modify the map to use a 	 as the key instead of a tuple.

(define-map supported-assets
{

contract: principal
}
{

active: bool,
price-feed-id: (buff 32),
token-base: uint,
slippage: uint,

}
)

This map unnecessarily uses a tuple containing only one element, a
	 principal, instead of using the principal directly. This approach
increases overall operational costs and reduces code readability.
contract

principal

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

17

[QA-04] Simplification of set-supported-
asset

Description
The 						 function is used to configure
information related to a supported token.

One of the settings passed is the 		 , which must always be equal
to		 .

minting-auto-v1::set-supported-asset

token-base

10^asset_decimals

(asserts! (is-eq token-base (pow u10 (unwrap-panic
(contract-call? token get-decimals)))) ERR_TOKEN_BASE_MISMATCH)

Since this condition is always necessary, passing the base itself is
redundant. You can directly use 		 as the base without
needing to add any extra parameters to the function. .

10^asset_decimals

Recommendation
Set the token base as
	 in the			 map.

(pow u10 (unwrap-panic (contract-call? token get-

decimals))) supported-assets

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

18

Description

[QA-05] Implement Standard Checks for
All Saved Principals

Within the 			 contract, sensitive principals are stored in
the storage contracts. However, none of these principals are verified to
ensure they conform to the standard of the current network.

If a testnet principal is mistakenly used instead of a mainnet principal, it
could lead to critical functionality becoming inoperative.

minting-auto-v1

Recommendation
Ensure that all storage contracts saving principals verify the validity of
these principals for the current network by utilizing the
function.					 .

is-standard

https://docs.stacks.co/reference/functions#is-standard

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

19

Description

[QA-06] Unused Redeem Memo Argument

The 				 function includes an optional
argument that is never utilized. Although it is optional, providing
this parameter does not influence the function’s behavior.

Recommendation
Consider either removing the 	 argument altogether or updating the
		 		 function to accept a memo and pass it
along.

minting-auto-v1::redeem memo

memo

redeeming-reserve-v1::transfer

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

20

[QA-07] Missing Required USDh Amount
Validation

Description
In the 			 contract, both the 	 and 	 functions
do not validate whether the 				 is greater than 0. If a
value of 0 is passed, both operations will revert in the
contract’s internal token 	 and 	 functions with the error 		
 	 .

This lack of validation complicates error debugging for external
integrators.

minting-auto-v1 mint redeem

amount-asset-required

usdh-token-v1

mint burn

(err 1)

Recommendation
In the 	 and functions of the 		 	 contract,
ensure that the 			 is checked to be greater than 0.
If it is not, the operation should revert with a custom error code.

mint redeem minting-auto-v1

amount-asset-required

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

21

[QA-08] Slippage Mechanism Is
Ineffective Against Price Fluctuations

Description
When a whitelisted user intends to mint or redeem, they
provide a 			 argument, which should indicate the
maximum amount they are willing to lose due to fee differences or price
fluctuations.
This 			 argument is compared with the contract’s
stored 		 variable from the 			 map and is
reverted if exceeded.

slippage-tolerance

slippage-tolerance

slippage supported-assets

(slippage-bps (get slippage supported-asset-data))
;; ...
(asserts! (<= slippage-bps slippage-tolerance) ERR_SLIPPAGE_TOO_HIGH)

The issue with the current implementation is that the slippage is actually a
percentage change in price variation, not an expected percentage change
in the output amount:

(slippage-amount (/ (* price slippage-bps) bps-base))
(amount-asset-required (/ (* amount-usdh-requested oracle-base token-base)
(- price slippage-amount) usdh-base))

Example scenario:

	գ Protocol and user slippage: 1000 (10%)
	գ 				 : 10,000
	գ Asset token:
	գ 				 is calculated as:

amount-usdh-requested USDh

aeUSDC

amount-asset-required 11,111

= 10,000 / (1 - 0.1)
= 10,000 / 0.9
= 11,111

The requirement of 11,111 	 assets represents an 11.11% increase
over the originally expected 10,000 amount (in the absence of a Pyth
oracle), instead of a 10% slippage.

This issue is further exacerbated when the Pyth Oracle is used:

Example second scenario:

	գ Protocol and user slippage: 100 (1%)
	գ User wants to exchange	 to
	գ User observes that the Pyth oracle shows a 1:1 exchange rate for the

assets and initiates a request using an updated price feed
	գ User submits a mint request with				 of 10,000

	 , expecting to pay between [10,000 - 10,100]	 (his 1% 	
 slippage)
	գ Someone submits a more recent Pyth price update that spikes the

exchange rate to 0.95	 for 1

aeUSDC

aeUSDC USDh

amount-usdh-requested

USDh aeUSDC

aeUSDC USDh

Security Review

Hermetica USDh

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Hermetica USDh
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Deprecated Pyth Oracle Version Is Used
[H-02] Hardcoded Pyth Price Exponent

8.2. Medium Findings
[M-01] Pyth Price Confidence Is Not Validated
[M-02] Redeeming Incorrectly Consumes Minting
Allowance

8.3. Low Findings
[L-01] Avoid Using tx-sender for Caller Identification

8.4. QA Findings
[QA-01] Absence of Events for Critical Actions
[QA-02] Typographical Error
[QA-03] Redundant Tuple with a Single Element as
Map Key
[QA-04] Simplification of set-supported- asset
[QA-05] Implement Standard Checks for All Saved
Principals
[QA-06] Unused Redeem Memo Argument
[QA-07] Missing Required USDh Amount Validation
[QA-08] Slippage Mechanism Is Ineffective Against
Price Fluctuations

2
3
4
4
5
5
5
5
6
7
8
9
9
10
11
11
12

13
13
14
14
15
16

17
18

19
20
21

22

	գ Since both the protocol and user slippage are 1%, they pass, regardless
of how price fluctuation actually impacts the final amount

	գ 				 is calculated as: 10,632amount-asset-required aeUSDC

= 10,000 / (0.95 - 0.0095)
= 10,000 / 0.9405
= 10,632

Execution proceeds, and the user must pay 10,632 		 instead of
their intended maximum of 10,100 	 to mint the 10,000 	 ,
resulting in an unexpected increase of 532 	 .

aeUSDC

aeUSDC

aeUSDC

Recommendation
Since the development team plans to configure the minter contract to
accept Pyth prices no older than 2 blocks in production, along with an
agreed-upon supported asset slippage with the main users, the issue can
be acknowledged.

However, because the Pyth staleness check can be arbitrarily changed,
leading to wider price variations, it is recommended to modify the
contract, at least in future versions, as follows:

In the 	 function, rename the 			 variable to 	
		 and ensure that the 				 is less
than or equal to this value; otherwise, revert.

In the 		 function, rename the 			 variable to
			 and ensure that the 				 is
greater than or equal to this value; otherwise, revert.

mint slippage-tolerance

maximum-assets-in amount-asset-required

redeem slippage-tolerance

minimum-assets-out amount-asset-required

USDh

