
PYTH ORACLE CLIENT SECURITY REVIEW

Conducted by:
KRISTIAN APOSTOLOV, ALIN BARBATEI (ABA)

DECEMBER 8TH, 2024

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

2

Clarity Alliance is a team of expert whitehat hackers specialising in
securing protocols on Stacks.

They have disclosed vulnerabilities that have saved millions in
live TVL and conducted thorough reviews for some of the largest
projects across the Stacks ecosystem.

Learn more about Clarity Alliance at clarityalliance.org.

1. About Clarity Alliance

http://clarityalliance.org

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

3

This report is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. This report is not, nor
should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts
Clarity Alliance to perform a security assessment.

This report does not provide any warranty or guarantee regarding
the absolute bug-free nature of the technology analyzed, nor do
they provide any indication of the technologies proprietors, business,
business model or legal compliance.

This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report
in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive
assessing process intending to help our customers increase the
quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level
of ongoing risk. Clarity Alliance’s position is that each company and
individual are responsible for their own due diligence and continuous
security. Clarity Alliance’s goal is to help reduce the attack vectors and
the high level of variance associated with utilizing new and consistently
changing technologies, and in no way claims any guarantee of security
or functionality of the technology we agree
to analyze.

The assessment services provided by Clarity Alliance are subject to
dependencies and under continuing development. You agree that your
access and/or use, including but not limited to any services, reports,
and materials, will be at your sole risk on an as-is, where-is, and as-
available basis.

Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. The assessment reports
could include false positives, false negatives, and other unpredictable
results. The services may access, and depend upon, multiple layers of
third parties. Notice that smart contracts deployed on the blockchain
are not resistant from internal/external exploit. Notice that active
smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Clarity Alliance does
not guarantee the explicit security of the audited smart contract,
regardless of the verdict.

2. Disclaimer

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

4

3. Introduction

5. Risk Classification

A time-boxed security review of the Pyth Oracle Client
implementation, where Clarity Alliance reviewed the scope, whilst
simultaneously building out a testing suite for the protocol.

4. About Pyth Oracle
Pyth Network is an oracle that publishes financial market data to
multiple blockchains. The market data is contributed by over 80
first-party publishers, including some of the biggest exchanges
and market-making firms in the world. Pyth offers price feeds for
several asset classes, including US equities, commodities, and
cryptocurrencies. Each price feed publishes a robust aggregate of
publisher prices that updates multiple times per second. Price feeds
are available on multiple blockchains and can be used in off-chain
applications.

Severity

Likelihood: High

Likelihood: Medium

Impact: High

Critical

High

Impact: Medium

High

Medium

Impact: Low

Medium

Low

Likelihood: Low Medium Low Low

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

5

5.1 Impact

•	 High - leads to a significant material loss of assets in the
protocol or significantly harms a group of users.

•	 Medium - only a small amount of funds can be lost (such as
leakage of value) or a core functionality of the protocol is
affected.

•	 Low - can lead to any kind of unexpected behavior with some
of the protocol’s functionalities that’s not so critical.

5.2 Likelihood

5.3 Action required for severity levels

•	 High - attack path is possible with reasonable assumptions
that mimic on-chain conditions, and the cost of the attack is
relatively low compared to the amount of funds that can be
stolen or lost.

•	 Medium - only a conditionally incentivized attack vector, but
still relatively likely.

•	 Low - has too many or too unlikely assumptions or requires a
significant stake by the attacker with little or no incentive.

•	 Critical - Must fix as soon as possible (if already deployed)
•	 High - Must fix (before deployment if not already deployed)
•	 Medium - Should fix
•	 Low - Could fix

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

6

6. Security Assessment Summary

The following contracts were in the scope of the security review:

Review Commit Hash:
086fff092ef01392a51b96a8972b03b4599945b9

Scope

•	
•	
•	
•	
•	
•	
•	
•	

pyth-governance-v1.clar

pyth-store-v1.clar

pyth-pnau-decoder-v1.clar

pyth-traits-v1.clar

pyth-oracle-v2.clar

pyth-p2wh-decoder-v1.clar

wormhole/wormhole-core-v2.clar

wormhole/wormhole-traits-v1.clar

https://github.com/Trust-Machines/stacks-pyth-bridge/commit/086fff092ef01392a51b96a8972b03b4599945b9

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

7

7. Executive Summary
Over the course of the security review, Kristian Apostolov, Alin
Barbatei (ABA) engaged with Trust Machines to review Pyth Oracle.
In this period of time a total of 38 issues were uncovered.

Protocol Summary

Findings Count

Protocol Name

Severity

Total Findings 38

Amount

Date

Repository

Protocol Type

Pyth Oracle

December 8th, 2024

https://github.com/Trust-Machines/stacks-pyth-bridge

Oracle Client

Critical 1

High

Low

3

13

Medium

QA

4

17

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

8

[C-01] Attacker Can Corrupt Guardian Set
During Update

Resolved

[H-01] Absence of Pyth Stacks Governance
Module

Acknowledged

[H-02] Wormhole Contract Vulnerable to
Hijacking at Deployment

Resolved

[H-03] Limited Price Updates Due to High
Runtime Costs

Acknowledged

[M-01] Potential Use of Stale Price When
Updating Price

Resolved

[M-02] Price Update Logic May Cause
Denial of Service

Resolved

[M-03] Changing Governance Data Source
May Cause Denial of Service in
Operations

Resolved

[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

Resolved

[L-01] Inability to Deactivate Price Update
Fee

Resolved

[L-02] Default Price Update Fee Differs
From Documentation

Resolved

[L-03] Governance Updated Principals Are
Not Validated

Resolved

[L-04] Parallel Governance Proposals Can
Be Blocked

Acknowledged

[L-05] Incorrect Validation of Guardian Set
Index Update

Resolved

[L-06] Incorrect Validation of Guardian Set
ChainId

Resolved

[L-07] Missing Implicit Stale Price Checking
API

Resolved

[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold

Acknowledged

[L-09] Missing Overlay Checks on V AA
Payloads

Resolved

[L-10] Incorrect Validation of Minor Version
When Updating Price

Resolved

[L-11] Wormhole Guardian Set Can Be
Updated With An Empty Set

Resolved

[L-12] Wormhole Guardian Set Can Contain
Duplicate Entries

Resolved

[L-13] PTGM Price Data Sources Length Is
Not Validated

Resolved

Summary of Findings

Critical

ID Title Severity Status

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

High

High

High

Medium

Medium

Medium

Medium

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

9

[QA-01] Remove Outdated pyth-p2wh-
decoder-v1 Contract

Resolved

[QA-02] Leftover Bitcoin Timestamp Code
Usage

Resolved

[QA-03] Project Call To Action References
Outdated Repository

Resolved

[QA-04] Error Code Inconsistencies Resolved

[QA-05] Redeploy Dependency Contracts for
Optimization

Acknowledged

[QA-06] Eliminate Unused Constants Resolved

[QA-07] Redundant Tuple with One Element
as Map Key

Resolved

[QA-08] Incorrect Naming of Update Function
Events

Resolved

[QA-09] Inconsistent Return Values in
Governance Update Functions

Resolved

[QA-10] Inconsistent Reference to Pyth State
Bearing Contract

Resolved

[QA-11] Misleading, Outdated, or Incomplete
Comments

Resolved

[QA-12] Use Constants Where Appropriate Resolved

[QA-13] Simplification Opportunities in Code
Operations

Resolved

[QA-14] Typographical Errors Resolved

[QA-15] Merkle Implementation Can
Invalidate Correct Price Updates

Acknowledged

[QA-16] AUWV Price Feed Update Length Is
Not Validated

Resolved

[QA-17] Price Update Can Be From The
Future

Acknowledged

Summary of Findings
ID Title Severity Status

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

10

The Wormhole guardians are responsible for validating any VAA
(Verified Action Approval) messages. These messages include both
governance updates to the Pyth instance and price updates.

When updating the guardian set in the		 contract
via the				 function, the current logic operates
as follows:

•	 The	 		 function accepts a VAA containing
the new guardian set’s Ethereum equivalent addresses		
() and the public keys corresponding to the
new guardian addresses ().

•	 Calling			 is permissionless, as it assumes
sufficient validation is performed on the VAA itself.

•	 The VAA is validated to have been issued by the previous
guardian set, which is appropriate and standard.

•	 The resulting Ethereum equivalent addresses are then
compared to the provided public keys and input to ensure they
match.

•	 Matched pairs are then directly saved to storage.

The critical issue with this mechanism is that it assumes the
resulting matched pairs from the
function call are validated, which they are not.

In					 , if a key pair does not
match, an empty entry is added to the result without any validation.

[C-01] Attacker Can Corrupt Guardian Set
During Update

Description

8.1. Critical Findings

8. Findings

wormhole-core-v2

update-guardians-set

guardian-set-vaa

uncompressed-public-keys

update-guardians-set

check-and-consolidate-public-keys

check-and-consolidate-public-keys

(entry (if

(is-eth-address-matching-public-key uncompressed-public-key eth-address)

	 { compressed-public-key: compressed-public-key, uncompressed-public-key: unco

 { compressed-public-key: 0x, uncompressed-public-key: 0x })))

;; ... code ...

result: (unwrap-panic (as-max-len? (append (get result acc) entry) u19)),

From a high-level perspective, during an update, a malicious actor
can intercept a valid VAA message generated by the Wormhole
guardians and submit it with invalid, random public keys. The
resulting array of zeroed addresses would then be saved as valid
guardians.

update-guardians-set

https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L197
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L197
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L201
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L203
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L202
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L214
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L251-L253
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L257

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

11

Consequently, any and all VAA messages would become invalid,
permanently disabling the contract. The damage is irreversible, as
even a new guardian set cannot be added since they must also be
signed by the invalid, zeroed guardians.

In the			 contract, within the	
function, first filter the resulting			 to
remove any zeroed entries.

Secondly, after removing the empty entries, verify that the length
of the filtered				 matches the length of
the Ethereum addresses extracted from the valid VAA message.

Without this second check, updates with an arbitrary number of
valid guardians could still be created.

Recommendation
wormhole-core-v2 update-guardians-set

consolidated-public-keys

consolidated-public-keys

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

12

[H-01] Absence of Pyth Stacks Governance
Module

Description

8.2. High Findings

Currently, the system can be deployed and operate with the
existing defaults, but no settings can be updated or changed. For
instance, this includes a 10 units fee sent to a hardcoded address,
with no means to alter them.

Additionally, due to the absence of a Pyth Stacks governance
module, the current governance commands are arbitrary and must
align with the future governance implementation.

The Pyth Network has a governance mechanism that enables it
to send specific commands to existing implementations on each
supported chain. However, this mechanism does not currently
support interaction with the Stacks governance contract
		 , as it requires the addition of a new, custom
Governance Module to the core Pyth codebase.

Pyth developers have allocated IDs for the Stacks ecosystem in
PR#1158 and PR#1168, but a governance module implementation is
still needed to enable command transmission.

The existing			 contract correctly verifies that
the issued Verified Action Approvals messages contain the correct
targeted chain and originate from valid emitters:

pyth-governance-v1

pyth-governance-v1

;; Stacks chain id attributed by Pyth

(define-constant EXPECTED_CHAIN_ID (if is-in-mainnet 0xea86 0xc377))

;; ... code ...

;; Check target-chain-id

(asserts! (is-eq

(get value cursor-target-chain-id) EXPECTED_CHAIN_ID) ERR_INVALID_PTGM)

;; Check module

(asserts! (is-eq (get value cursor-module) EXPECTED_MODULE) ERR_INVALID_PTGM)

Recommendation
Collaborate with the Pyth cross-chain developers to integrate the
custom Stacks blockchain governance module. Subsequently,
ensure that the			 implementation adheres to
the required interface.

Given the potential length of this process, a temporary solution
could involve using a different, standard governance contract until
the Pyth Governance Module is completed.

pyth-governance-v1

https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-governance-v1.clar#L68-L79
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-governance-v1.clar#L63
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-governance-v1.clar#L65
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-governance-v1.clar#L13-L31
https://github.com/pyth-network/pyth-crosschain/blob/95ed71653abc1b0f6046061f0456f406a7852665/target_chains/ethereum/contracts/contracts/pyth/PythGovernanceInstructions.sol#L30-L38
https://github.com/pyth-network/pyth-crosschain/pull/1158
https://github.com/pyth-network/pyth-crosschain/pull/1168
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-governance-v1.clar#L364-L367
https://github.com/pyth-network/pyth-crosschain/blob/95ed71653abc1b0f6046061f0456f406a7852665/governance/xc_admin/packages/xc_admin_common/src/chains.ts#L67
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-governance-v1.clar#L52-L61

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

13

This is a highly sensitive issue, as the community must understand
that until Pyth assumes full ownership of the contracts, the current
implementation—while correct and valid—is not directly managed
by Pyth. It solely utilizes their data feeds for price updates.

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

14

Description

[H-02] Wormhole Contract Vulnerable to
Hijacking at Deployment

The Wormhole guardian set is responsible for validating any VAA
(Verified Action Approval) messages. These messages include
governance updates to the Pyth instance and price updates.

When updating the guardian set in the		 contract
via the				 function for the first time, the
initial absence of guardians results in the VAA message guardian
validation being bypassed.

wormhole-core-v2

update-guardians-set

(let ((vaa (if (var-get guardian-set-initialized)

(try! (parse-and-verify-vaa guardian-set-vaa))

(get vaa (try! (parse-vaa guardian-set-vaa)))))

This design assumes that the first caller is trustworthy and will
correctly set the initial guardians.

However, the issue arises because the			
function is permissionless. Consequently, after deploying the
		 contract, the first caller to execute the update
function can set any arbitrary guardians.

A malicious actor could front-run the				 call
and assign their controlled addresses as guardians. By controlling
the guardians, they could then generate any price feed equivalent
outside the Wormhole ecosystem and manipulate the resulting
price.

update-guardians-set

wormhole-core-v2

update-guardians-set

Recommendation
We propose two potential solutions.

Firstly, when deploying the			 contract, record
the deployer’s principal. Ensure that the first call to
		 is made by the deployer.

The second solution is to remove the differential behavior in the
			 function and directly hardcode the initial
guardian set in the		 map. Although this approach
is simpler, it will significantly increase the overall contract size,
slightly raising execution fees for each price update call.

wormhole-core-v2

update-

guardians-set

update-guardians-set

guardians-sets

https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L196-L198
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L196-L198

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

15

Description

[H-03] Limited Price Updates Due to High
Runtime Costs

Pyth operates as a pull-type oracle, allowing anyone to update
asset prices by submitting valid price update payloads for each
asset. However, the current implementation is highly runtime-
intensive, making it challenging to update even a single asset at a
time due to the associated costs.

Stacks imposes several execution costs and limits per block.
Specifically:

Expressing these results as percentages of the block limits, we find
(no writes occurred in the last case as it reverted beforehand):

Benchmark results indicate that the runtime execution limit for an
entire block is exceeded when updating four different assets (price
feeds) simultaneously.

The raw benchmark results are as follows:

https://book.clarity-lang.org/ch12-00-runtime-cost-analysis.html

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

16

Reviewing current Stacks Space Usage, we observe that runtime
usage is generally low, typically under 10%, with a maximum
observed around 70%.

In practice, miners can include at most one transaction updating
three feeds simultaneously (77% usage) or up to seven individual
transactions updating one price each (96% usage) per block. The
cost increase per call is exponential as more data is processed
when multiple feeds are bundled together.

This limitation restricts Pyth to updating a maximum of seven
assets per block. As a general-purpose oracle, this is a significant
constraint, as the entire blockchain cannot be limited to such a
small number of assets. In practice, more assets can be updated if
spread across multiple blocks, considering staleness.

Recommendation
A more runtime-efficient implementation is necessary. While the
Stacks blockchain is still expanding, it may be possible to mitigate
this issue by developing automated scripts that distribute asset
updates over several blocks, leveraging staleness to provide valid
but less frequent updates. However, this is not a viable long-term
solution.

https://observablehq.com/@vini-btc/stacks-space-usage

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

17

[M-01] Potential Use of Stale Price When
Updating Price

Description

8.3. Medium Findings

Note that				 is actually
	 , as mentioned in another issue.

The timestamp for the last Stacks block is used instead of the
current one because it is not possible to obtain information for the
block in which a transaction is currently being processed. The
timestamp is only generated after the block is committed to the
chain.

This design flaw allows stale prices to be used when updating prices
in a block that, once committed to the blockchain, would exceed the
stale limit.

Consider the following image and example for theoretical Stacks
blocks #242717, #242718, and #242719:

When updating a price in the Pyth storage contract, a staleness
check is performed to ensure the updated price is not outdated.

(let ((stale-price-threshold

(contract-call? .pyth-governance-v1 get-stale-price-threshold))

(latest-bitcoin-timestamp (unwrap! (get-stacks-block-info? time

(- stacks-block-height u1)) ERR_STALE_PRICE)))

;; ... code ...

;; Ensure that price is not stale

(asserts! (>= (get publish-time entry)

(- latest-bitcoin-timestamp stale-price-threshold)) ERR_STALE_PRICE)

•	 While execution is in block #242719, the current implementation
checks if price feed is stale against the previous block’s
timestamp

•	 The previous block, #242718, has the timestamp		 ,
which is within the staleness check limits and passes.

•	 The chronological staleness check would fail at		 , 	
which is in the next block. However, since the current block
cannot access this time, the update is considered valid.	

latest-bitcoin-timestamp latest-stacks

-timestamp

stacks-block-height

t + 5s

t + 7s

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

18

In theory, Stacks blocks are minted every 5 seconds, but real-time
data shows variations of up to tens of seconds between blocks.

Another scenario occurs when the Stacks blockchain stops
producing blocks and resumes after a significant delay. The price
feeds would still be considered valid, as they are compared against
the previous block’s timestamp. A real-life example of this:

•	 Stacks block #242879 was mined at			 .
•	 The next Stacks block #242880 was minted at			

 , 25 minutes later.
•	 Any feed price updates in		 would use the timestamp of

block	 , adding 25 minutes to any staleness check.

14:22:53 2024.11.21

14:47:42 2024

.11.21

#242880

#242879

This delay occurred because Bitcoin block #871339, which
anchored the last Stacks block	 , and block #871340 were
25 minutes apart.

Such delays in Bitcoin blocks are not uncommon. Another incident
involved Bitcoin blocks #867863 and #867864, which were 30
minutes apart.

The impact is that any price update transaction created between
the staleness check limit and the current block commit (the Invalid
zone) would be considered valid, even if the price is logically
stale. This may lead to DeFi protocols using invalid, stale prices,
potentially resulting in financial loss for users.

#242879

Recommendation
Currently, there is no mechanism to determine time-related
information from code running in a transaction being executed in
the latest block.

A workaround involves using a variable to denote the Stacks block
time and considering it when checking staleness:

(define-constant STACKS_BLOCK_TIME u5)

(asserts! (>= (get publish-time entry) (+

(- latest-bitcoin-timestamp stale-price-threshold) STACKS_BLOCK_TIME)) ERR_STALE_PRI

While the example snippet uses a constant 5 seconds to denote
Stacks block time, a more robust implementation would involve
a variable that can be adjusted by governance to account for
different scenarios and blockchain states.

https://explorer.hiro.so/blocks?chain=mainnet
https://explorer.hiro.so/blocks?chain=mainnet
https://explorer.hiro.so/block/0xf1bfb6c9983e05ddcbefc95b2b12ea1e90066f14cbc3eeecaeb5bc34a8f68153?chain=mainnet
https://explorer.hiro.so/block/0xa88d6a81777266510a14b37d22ef4822d0512772e51b90e7885cfcc5b1c09641?chain=mainnet
https://www.blockchain.com/explorer/blocks/btc/871339
https://www.blockchain.com/explorer/blocks/btc/871340
https://www.blockchain.com/explorer/blocks/btc/867863
https://www.blockchain.com/explorer/blocks/btc/867864

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

19

The Pyth pull oracle is widely used across numerous blockchains.
The price update API is particularly important and is expected to
function consistently across all blockchains.

However, the current Stacks implementation deviates from the
known behavior when updating price feeds if no valid feeds are
provided.

In the EVM API, the price update function call will succeed even if
the update is ignored. In contrast, in Stacks, the call reverts with 	
			 if there isn’t at least one valid price update.

Description

[M-02] Price Update Logic May Cause
Denial of Service

The current implementation of Pyth for the Stacks ecosystem
primarily offers two APIs:

•	 One for retrieving the current price via:
•	
•	 Another for updating the price via:

pyth-store-v2::read

ERR-INVALID-UPDATES

-price-feed

pyth-oracle-v2::verify-

and-update-price-feeds

;; Ensure we have at least one entry

(asserts! (> (len successful-updates) u0) ERR_INVALID_UPDATES)

This significant deviation from the known behavior means that all
integrating protocols that choose to automatically submit price
feeds may be front-run by other submitters, causing their own
update call to revert.

This issue can arise either naturally, as users update their prices, or
maliciously, through a third party actively targeting a protocol.

stx-transfer?

Recommendation
Remove the check for valid updates on line L64.

Additionally, a change must be made in the oracle contract, as the
fee will be 0 in such cases, resulting in the		 call to
revert. Charge the fee only if it is greater than 0.

https://api-reference.pyth.network/price-feeds/evm/updatePriceFeeds
https://api-reference.pyth.network/price-feeds/evm/updatePriceFeeds
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-store-v2.clar#L63-L64
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-store-v2.clar#L63-L64
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-store-v2.clar#L63-L64
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-oracle-v2.clar#L41-L43
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-store-v2.clar#L64
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-oracle-v2.clar#L41-L43
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-oracle-v2.clar#L41-L43

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

20

Description

[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations

The Pyth Stacks governance contract is designed to accept
updates only from an initial, trusted emitter. However, this emitter
can be changed through a call to					
	 		 .

An update initiated by the trusted emitter is encapsulated within a
Verified Action Approval (VAA) message. Within the
contract, it is always verified that any message received from the
trusted emitter is newer than the last message received.

pyth-governance-v1::update-

governance-data-source

pyth-governance-v1

;; Check Sequence

(asserts! (> sequence (var-get last-sequence-processed)) ERR_OUTDATED)

;; Update Sequence

(var-set last-sequence-processed sequence)

This check uses the sequence number, which is:

sequence u64 - the auto-incrementing integer that represents the
number of messages published by this emitter

However, the current mechanism for updating the trusted
governance data source does not consider this sequence number.
After changing the governance emitter, the			
variable is not reset to match the new emitter.

If the new emitter has published fewer messages than the previous
trusted emitter, subsequent updates will be considered outdated
and will revert with		 .

Consider the following scenario:

last-sequence-processed

ERR_OUTDATED

•	 The Pyth governance emitter reaches 30,000 messages.
•	 Governance decides to switch to a newly created emitter.
•	 The new emitter has 0 messages.
•	 Consequently, all further governance updates will revert wit	

		 .ERR_OUTDATED

The new emitter must then send a large number of messages to
reach the sequence number of the previous emitter. Until that
point, no updates can be made to the Pyth Stacks contract.

Recommendation
When updating the governance data source using the
			 function, include the new emitter’s
sequence number in the VAA message and update			
 		 accordingly.

update-

governance-data-source

last-sequence

-processed

https://wormhole.com/docs/learn/infrastructure/vaas/
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-governance-v1.clar#L368-L371
https://wormhole.com/docs/learn/infrastructure/vaas/

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

21

Description

[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

The Wormhole guardian set update procedure consists of two phases:

1.	 The current guardian set emits messages containing the new
guardian set to all targeted chains.

2.	 The current guardian set replaces itself with the new guardian set.

Between the emission of update messages to all chains	 and the
actual change of the set	 , up to 24 hours can elapse. During
this period, price feed updates continue to be emitted using the old
guardian set and must be accounted for.

To address this, Pyth oracle implementations are required to accept
price update messages emitted from the old guardian set for an
additional 24 hours after the update, even though the guardian set has
changed.

This expiration pattern is evident in existing Pyth implementations. For
example, in Ethereum, when a new guardian set is submitted, the old
guardian set is set to expire. The old guardian set will expire in 24
hours, meaning that messages sent with it remain valid until that time.

The current Pyth Stacks implementation does not incorporate any
expiration logic and only verifies that received messages belong to the
currently active guardian set.

As a result, during any future guardian set update, price updates may
become unavailable for up to 24 hours.

(1)

(2)

;; Ensure that the guardian-set-id is the active one

(asserts! (is-eq (get guardian-set-id (get vaa message))

(var-get active-guardian-set-id))

Recommendation
When invoking the						 function,
also set an expiration time for the soon-to-be-old guardian set. In the
			 function, modify the set verification to allow
the Verified Action Approval (VAA) message guardian set as valid if it
originates from a known guardian set and is within the expiration time
frame.

ormhole-core-v2::update-guardians-set

parse-and-verify-vaa

https://github.com/pyth-network/pyth-crosschain/blob/59f3f6f37ca9eedc111bee37218a08d416c48e8f/target_chains/ethereum/contracts/contracts/wormhole-receiver/ReceiverGovernance.sol#L32-L56
https://github.com/pyth-network/pyth-crosschain/blob/59f3f6f37ca9eedc111bee37218a08d416c48e8f/target_chains/ethereum/contracts/contracts/wormhole-receiver/ReceiverGovernance.sol#L54
https://github.com/pyth-network/pyth-crosschain/blob/59f3f6f37ca9eedc111bee37218a08d416c48e8f/target_chains/ethereum/contracts/contracts/wormhole-receiver/ReceiverSetters.sol#L13-L17
https://github.com/pyth-network/pyth-crosschain/blob/59f3f6f37ca9eedc111bee37218a08d416c48e8f/target_chains/ethereum/contracts/contracts/wormhole-receiver/ReceiverSetters.sol#L13-L17
https://github.com/pyth-network/pyth-crosschain/blob/59f3f6f37ca9eedc111bee37218a08d416c48e8f/target_chains/ethereum/contracts/contracts/wormhole-receiver/ReceiverMessages.sol#L58-L64
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L89-L92
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L89-L92

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

22

[L-01] Inability to Deactivate Price Update
Fee

Description

8.4. Low Findings

The current system for updating feed prices does not permit setting a
fee to 0.

Although fees can technically be set to 0 through a call to
				 , the functions
		 and			 from the
	 contract will revert when a fee of 0 is encountered. This
is due to the		 function attempting to transfer 0 tokens.

This restriction hinders the protocol’s ability to offer promotional
periods or to initially promote the use of the oracle without charging
users any fees.

Recommendation
Adjust the				 and
functions to ensure that STX is only transferred if the fee is greater
than 0.

pyth-

governance-v1::update-fee-value verify-and-

update-price-feeds decode-price-feeds pyth-

oracle-v2

stx-transfer?

verify-and-update-price-feeds decode-price-feeds

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

23

Description

[L-02] Default Price Update Fee Differs
From Documentation

According to the Pyth documentation regarding fees:

Recommendation
Change the default fee exponent to	 instead of	 .

until governance is live, the fee will be 1 of the smallest
denomination of the blockchain’s native token (e.g., 1 wei on
Ethereum)

This is not correctly implemented on the Stacks blockchain, as the
default fee is set to 10 units of the smallest denomination, instead of
one.

In			 , the fee exponent and mantissa are set to a
default of 1- 1:

pyth-governance-v1

(define-data-var fee-value

{ mantissa: uint, exponent: uint }

{ mantissa: u1, exponent: u1 })

This means that when the actual fee amount is calculated, it
results in units.10

(fee-amount (* (len updated-prices) (* (get mantissa fee-info) (pow u10

(get exponent fee-info)))))

While not a major issue, this implementation detail differs from
how Pyth is intended to operate.

u0 u1

https://docs.pyth.network/price-feeds/how-pyth-works/fees
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-governance-v1.clar#L63
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-oracle-v2.clar#L41

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

24

Description

[L-03] Governance Updated Principals Are
Not Validated

When updating the principals in the Pyth governance contract,
there is no verification to ensure that the resulting principal is valid for
the current network.

For instance, if a contract from the testnet is mistakenly set instead of
one from the mainnet, the entire Pyth oracle would cease to function
until another governance update corrects the error.

Recommendation
In the						 function, validate the
		 variable using the		 Clarity function.

pyth-governance-v1::parse-principal

new-principal is-standard

https://docs.stacks.co/reference/functions#is-standard

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

25

Description

[L-04] Parallel Governance Proposals Can
Be Blocked

The current			 governance implementation is
permissionless, allowing anyone to call the update configuration
functions, provided the Verified Action Approval (VAA) message is
valid. The VAA message can only be issued by the authorized Pyth
governance module. Once created on Pythnet, it can be forwarded to
the Stacks contract by anyone.

To prevent replay attacks or the reuse of old VAAs, the Stacks contract
checks that the VAA sequence number is newer than any previously
seen.

pyth-governance-v1

;; Check Sequence

(asserts! (> sequence (var-get last-sequence-processed)) ERR_OUTDATED)

;; Update Sequence

(var-set last-sequence-processed sequence)

However, this mechanism allows for a specific denial-of-service (DOS)
scenario if there is more than one active proposal. By intentionally
submitting a newer proposal before an older one is processed, the
older proposal can be invalidated.

Example:

•	 Governance needs to update the Stacks decoder and fee.
•	 Two proposals are created: Proposal A to update the decoder

and Proposal B to increase the fee. Proposal B will have a
higher sequence number than A.

•	 Before governance bots can automatically call Stacks contracts
with the updated values, a malicious user can submit Proposal
B’s VAA first, causing Proposal A to revert.

The overall impact is that when multiple proposals are in parallel, an
attacker can delay the full system update by front-running all updates
with the most recent proposal.

Recommendation
As this scenario is extremely rare and would only cause a slight delay in
updates, the recommendation is to be aware of this possibility and
ensure Pyth governance creates a new proposal only after the previous
one has been updated.

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

26

Description

[L-05] Incorrect Validation of Guardian Set
Index Update

When updating the existing guardian set in the			
contract, several validations are performed on the new set provided.

The guardian set index check, conducted in the
		 function, is incorrect.

Official implementations must always ensure that the next index set
increases by exactly 1 step, as specified here. However, the
		 implementation only checks for an increase in value.

;; Ensure that next index > current index

(asserts! (> (get value cursor-new-index) (var-get active-guardian-set-id))

ERR_GSU_CHECK_INDEX)

This deviates from the general Pyth procedure and may lead to
unexpected situations when upgrading sets.

wormhole-core-v2

parse-and-verify

-guardians-set

parse

guardians-set

Recommendation
Modify the next index check to ensure it always increases by exactly
one step from the previous set.

With this modification, attention must be given to the
			 variable, which is set to 0.

As it stands, the wormhole governance contract can only be initialized
with the guardian set index starting at 1. However, if the set reaches
higher values before the		 contract is deployed, it will
revert if attempting to update it directly to the required set.

In such cases, either change the default			
value to			 or discard any guardian set index
checks when the contract is first initialized.

wormhole-core-

v2.active-guardian-set-id

wormhole-core-v2

active-guardian-set-id

<existing-set-id> - 1

https://github.com/pyth-network/pyth-crosschain/blob/628e5ee68cf3323dd43e74244290d766804e2a7b/target_chains/ethereum/contracts/contracts/wormhole-receiver/ReceiverGovernance.sol#L47-L50

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

27

Description

[L-06] Incorrect Validation of Guardian Set
ChainId

When updating the existing guardian set in the			
contract, several validations are performed on the newly provided set.
However, the validation of the guardian set chainId in the			
			 function is incorrect.

Official implementations verify that the chainID is either the current
Pyth designated chainID for the network or 0.

Recommendation
Modify the check on line L349 to also recognize the Stacks Pyth chain
ID (for mainnet or	 for testnet) as valid.

wormhole-core-v2

parse-and

60038 50039

-verify-guardians-set

The current Stacks implementation incorrectly mandates that the
chainId value must always be 0, instead of also accepting the current
chainId as valid.

(asserts! (is-eq (get value cursor-chain) u0)

This deviation from established implementations may result in
governance guardian update messages being incorrectly invalidated.

https://github.com/pyth-network/pyth-crosschain/blob/83f4174d8235fb6095c347366fd432fb95307162/target_chains/ethereum/contracts/contracts/wormhole/Governance.sol#L75-L78
https://github.com/pyth-network/pyth-crosschain/blob/83f4174d8235fb6095c347366fd432fb95307162/target_chains/ethereum/contracts/contracts/wormhole/Governance.sol#L75-L78
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L349
https://github.com/pyth-network/pyth-crosschain/blob/95ed71653abc1b0f6046061f0456f406a7852665/governance/xc_admin/packages/xc_admin_common/src/chains.ts#L148
https://github.com/pyth-network/pyth-crosschain/blob/95ed71653abc1b0f6046061f0456f406a7852665/governance/xc_admin/packages/xc_admin_common/src/chains.ts#L67
https://github.com/pyth-network/pyth-crosschain/blob/95ed71653abc1b0f6046061f0456f406a7852665/governance/xc_admin/packages/xc_admin_common/src/chains.ts#L148

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

28

Description

[L-07] Missing Implicit Stale Price
Checking API

The current Stacks Pyth implementation only offers an API that
does not validate price staleness when retrieving the price, but does so
only when updating it.

Recommendation
Introduce a		 equivalent function in the		 	
contract that checks for price freshness using the default price
staleness threshold.

Do not modify the		 function. A pure, unchecked
version of price retrieval must also exist so that protocols can
determine their own threshold, if necessary.

This behavior is completely different from standard Pyth APIs, which
include at least one function that implicitly checks for staleness. For
example, EVM:getPrice reverts with:

StalePrice: The on-chain price has not been updated within the last
getValidTimePeriod() seconds.

get-price pyth-oracle-v2

read-price-feed

https://github.com/pyth-network/pyth-crosschain/blob/95ed71653abc1b0f6046061f0456f406a7852665/governance/xc_admin/packages/xc_admin_common/src/chains.ts#L148
https://github.com/pyth-network/pyth-crosschain/blob/95ed71653abc1b0f6046061f0456f406a7852665/governance/xc_admin/packages/xc_admin_common/src/chains.ts#L148
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-store-v2.clar#L78-L82
https://api-reference.pyth.network/price-feeds/evm/getPrice

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

29

Description

[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold

The current deployment of Pyth governance utilizes the following
default settings for the fee receiver and stale duration checks:

Recommendation
Select an appropriate, team-controlled principal for receiving fees,
which will then be forwarded to the Pyth team.

Reevaluate the 2-hour price validity on the mainnet, as it is excessively
long for the current version of Nakamoto Stacks.

•	 Fee receiver principal:							
(mainnet) or						 (testnet)

•	 Stale price threshold: 2 hours for mainnet and 5 years for testnet

‘SP3CRXBDXQ2N5P7E25Q39MEX1HSMRDSEAP3CFK2Z3

‘ST3CRXBDXQ2N5P7E25Q39MEX1HSMRDSEAP1JST19D

If governance will not be accessible for some time post-deployment,
these values become crucial as they will remain in effect until
governance is available. Therefore, they must be selected with care.

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

30

Description

[L-09] Missing Overlay Checks on V AA
Payloads

Throughout the codebase, there are several key areas where Verified
Action Approval (VAA) messages are parsed. In none of these cases
are there checks to ensure that overlay data is not attached to the end
of a valid message.

Overlay refers to binary data that exists in a buffer after all parsing has
been completed but is not referenced by any code logic. Generally, this
results in increased resource consumption when parsing data buffers,
but it may also lead to unexpected behavior at times.

Pyth EVM standard implementations ensure that no overlay exists when
parsing messages. Examples include setting.guardians or changing
fees.

However, the Stacks Pyth implementation does not perform such
validation. Instances where it should be added include parsing the last
ending cursor in a VAA:

•	 In								 , there
should be no data after reading the guardian set keys.

•	 In			 , for all function updates, such as in		
			 , no further data should exist after the fee
exponent.

•	 In			 , within					 .	
	

‘wormhole-core-v2::parse-and-verify-guardians-set

pyth-governance-v1 parse

-and-verify-fee-value

pyth-governance-v1 parse-and-verify-prices-updates

Recommendation
In all cases where the end of a VAA buffer is parsed, ensure that the
entire payload is accounted for and no extra overlay data exists.

Example of adding checks in
		 :

wormhole-core-v2::parse-and-verify-

guardians-set

(asserts! (is-eq (get pos (get next guardians-bytes))

(len bytes)) ERR_GSU_CHECK_OVERLAY)

Another example of adding checks in
		 :

pyth-governance-v1::parse-and-

verify-fee-value

(asserts! (is-eq (get pos (get next cursor-exponent))

(len ptgm-body)) ERR_INVALID_ACTION_PAYLOAD)

https://github.com/pyth-network/pyth-crosschain/blob/1f38bdcd0c22158f09f6116821f17049d3790c28/target_chains/ethereum/contracts/contracts/wormhole/GovernanceStructs.sol#L103
https://github.com/pyth-network/pyth-crosschain/blob/1f38bdcd0c22158f09f6116821f17049d3790c28/target_chains/ethereum/contracts/contracts/wormhole/GovernanceStructs.sol#L125
https://github.com/pyth-network/pyth-crosschain/blob/1f38bdcd0c22158f09f6116821f17049d3790c28/target_chains/ethereum/contracts/contracts/wormhole/GovernanceStructs.sol#L125

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

31

Final example of adding an overlay check in					
			 , which requires several changes:

pyth-pnau-decoder-v1::

and-verify-prices-updates

@@ -42,6 +42,8 @@

(define-constant ERR_UNAUTHORIZED_FLOW (err u2404))

;; Price update not signed by an authorized source

(define-constant ERR_UNAUTHORIZED_PRICE_UPDATE (err u2401))

+;; VAA buffer has unused, extra leading bytes (overlay)

+(define-constant ERR_OVERLAY_PRESENT (err u2402))

;;;; Public functions

(define-public (decode-and-verify-price-feeds (pnau-bytes (buff 8192))

(wormhole-core-address <wormhole-core-trait>))

@@ -132,7 +134,7 @@

(define-private (parse-and-verify-prices-updates (bytes (buff 8192))

(merkle-root-hash (buff 20)))

(let ((cursor-num-updates (try! (

let

)

	 (cursor-updates-bytes

(contract-call? ‘SP2J933XB2CP2JQ1A4FGN8JA968BBG3NK3EKZ7Q9F.hk cursor-v2 sli

- 	 (updates (get result

- (fold parse-price-info-and-proof cursor-updates-bytes {

+ 	 (updates-data (fold parse-price-info-and-proof cursor-updates-bytes {

	 result: (list),

	 cursor: {

	 index: u0,

@@ -140,12 +142,15 @@

},

bytes: cursor-updates-bytes,

limit: (get value cursor-num-updates)

- 	 })))

+ 	 }))

+ 	 (updates (get result updates-data))

	 (merkle-proof-checks-success (get result

	 (fold check-merkle-proof updates {

	 result: true,

	 merkle-root-hash: merkle-root-hash

	 }))))

(asserts! merkle-proof-checks-success MERKLE_ROOT_MISMATCH)

+

+ 	 ;; Overlay check; 1 is added because 1 byte is used to store “cursor-num-updates

+ (asserts! (is-eq (+ u1 (get next-update-index (get cursor updates-data)))

+ (len bytes)) ERR_OVERLAY_PRESENT)

 (ok updates)))

 (define-private (check-merkle-proof

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

32

Description

[L-10] Incorrect Validation of Minor
Version When Updating Price

When updating the price of an asset, the provided price data
payload is verified to comply with the Pyth Network Accumulator
Update (PNAU) standard.

One aspect of this validation involves checking the minimum allowed
version, which is currently done incorrectly.

The Stacks Pyth implementation mistakenly enforces that the minor
version must be equal to 0 ().PYTHNET_MINOR_VERSION

;; Check minor version

(asserts! (is-eq

(get value cursor-version-min) PYTHNET_MINOR_VERSION) ERR_VERSION_MIN)

In contrast, official implementations recognize minor versions as
forward compatible and ensure no downgrades occur.

This approach deviates from the general Pyth procedure and may
lead to unexpected situations where price updates are incorrectly
invalidated.

Recommendation
Modify the minimum version check in
	 to ensure the minimum version is not less than			
 .

pyth-pnau-decoder-v1::parse-pnau-

header

VERSION

PYTHNET_MINOR_

https://github.com/pyth-network/pyth-crosschain/blob/4556454db46c5e5ebf8c2cbc3371cd1f3e89bf7c/target_chains/ethereum/contracts/contracts/pyth/PythAccumulator.sol#L79-L82

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

33

Description

[L-11] Wormhole Guardian Set Can Be
Updated With An Empty Set

When updating the guardian set in the		 contract via
the			 function, the current logic does not check if
the newly validated set is empty.

If the guardian set is empty, no new messages can be validated,
effectively rendering the entire functionality inoperative.

Although this scenario is unlikely, it could occur if an empty update
message payload, correctly signed, is mistakenly provided by the
current guardian set.

wormhole-core-v2

Recommendation
In the			 function, ensure that the length of the
guardian set to be saved is greater than zero.

update-guardians-set

update-guardians-set

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

34

Description

[L-12] Wormhole Guardian Set Can
Contain Duplicate Entries

When updating the guardian set in the		 contract
via the				 function, the current logic does not
check if the new set contains duplicate addresses.

In addition to being logically incorrect, duplicate addresses are
not counted when validating future VAA (Verified Action Approval)
messages and may even prevent reaching the minimum quorum
because of it.

This situation can only occur if, by mistake, a correctly signed update
message payload is provided by the current guardian set.

wormhole-core-v2

Recommendation
Check for duplicate Ethereum addresses in the V AA payload when the
			 is called.

An implementation example could involve adding a deduplication step
in		 , followed by a check to ensure the length of
		 matches the noted guardian count:

update-guardians-set

update-guardians-set

parse-guardian

eth-addresses

https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L283
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L185

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

35

@@ -68,6 +68,9 @@

(define-constant ERR_GSU_CHECK_INDEX (err u1304))

;; Guardian Set Update emission payload unauthorized

(define-constant ERR_GSU_CHECK_EMITTER (err u1305))

+;; Duplicate guardian addresses found

+(define-constant ERR_DUPLICATED_GUARDIAN_ADDRESSES (err u1306))

+

;; Guardian set upgrade emitting address

(define-constant GSU-EMITTING-ADDRESS 0x000

@@ -317,10 +320,13 @@

(let (

(cursor-address-bytes (unwrap-panic (

cursor-address-bytes

), pos: cue-position }

)

- {

- bytes: (get bytes acc),

- result: (unwrap-panic (as-max-len? (append (get result acc)

- (get value cursor-address-bytes)) u19))

- }))

+ (if (is-none (index-of? (get result acc) (get value cursor-address-bytes)))

+ {

+ 	 bytes: (get bytes acc),

+ 	 result: (unwrap-panic (as-max-len? (append (get result acc)

+ (get value cursor-address-bytes)) u19))

+ }

+ acc

+)))

;; @desc Parse and verify payload’s VAA

(define-private (parse-and-verify-guardians-set (bytes (buff 8192)))

@@ -339,6 +345,8 @@

	 ERR_GSU_PARSING_GUARDIANS_BYTES))

	 (guardians-cues (get result (fold is-guardian-cue

	 (get value guardians-bytes) { cursor: u0, result: (list) })))

	 (eth-addresses (get result (fold parse-guardian guardians-cues { bytes:

	 (get value guardians-bytes), result: (list) }))))

+ ;; Ensure there are no duplicate addresses

+ (asserts! (is-eq (len eth-addresses)

+ (get value cursor-guardians-count)) ERR_DUPLICATED_GUARDIAN_ADDRESSES)

 ;; Ensure that this message was emitted from an authorized module

 (asserts! (is-eq

 (get value cursor-module) 0x000

 ERR_GSU_CHECK_MODULE)

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

36

Description

[L-13] PTGM Price Data Sources Length Is
Not Validated

The function						 	 is
responsible for updating price data sources. During this process, a
malformed payload may occur where the PTGM (Pyth Governance
Message) specifies a certain number of sources, but fewer are actually
provided.

This scenario is not currently checked, and in the unlikely event that
such a payload is sent, fewer sources than intended may be added.
This could potentially lead to a lack of price validation during updates.

pyth-governance-v1::update-prices-data-sources

Recommendation
In the						 function of the		
	 contract, implement a check to ensure that the
number of data sources indicated by the payload matches the number
of sources parsed.

Example implementation:

parse-and-verify-prices-data-sources

pyth-governance-v1

+++ b/contracts/pyth-governance-v1.clar

@@ -48,6 +48,8 @@

(define-constant ERR_UNAUTHORIZED_UPDATE (err u4006))

;; Error parsing PTGM

(define-constant ERR_INVALID_PTGM (err u4007))

+;; Error invalid price data source

+(define-constant ERR_INVALID_PRICE_DATA_SOURCES (err u4008))

(define-data-var governance-data-source

{ emitter-chain: uint, emitter-address: (buff 32) }

@@ -425,6 +427,7 @@

	 bytes: cursor-data-sources-bytes,

	 limit: (get value cursor-num-data-sources)

	 }))))

+ (asserts! (is-eq (get value cursor-num-data-sources)

+ (len data-sources)) ERR_INVALID_PRICE_DATA_SOURCES)

 (ok data-sources)))

(define-private (parse-data-source

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

37

[QA-01] Remove Outdated
Contract

Description

8.5. QA Findings

The			 contract present in the codebase is
neither utilized nor compatible with other contracts. Developers
included it for posterity as it served as the initial building blocks and a
developer playground.

pyth-p2wh-decoder-v1

pyth-p2wh-decoder-v1

chore: re-introduce p2wh decoder (for posterity)

This contract is incompatible with existing contracts in several
ways:

•	 It does not adhere to the					 , lacking the	
				 function.

•	 It maintains state.
•	 It lacks necessary checks and validations.
•	 It expects to interact with a nonexistent				

contract.
•	 It contains TODOs and remnants of development.

pyth-traits-v1.decoder-trait

decode-and-verify-price-feeds

wormhole-core-dev-preview-1

Recommendation
Remove the contract entirely from the codebase. For posterity, the
contract is already preserved in the hirosystems repository., so
duplicating it in the new codebase is unnecessary.

https://github.com/hirosystems/stacks-pyth-bridge/commit/23b8232714e421a288cd6aa4ceb442468b8e8579
https://github.com/hirosystems/stacks-pyth-bridge/blob/main/contracts/pyth-p2wh-decoder-v1.clar

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

38

Description

[QA-02] Leftover Bitcoin Timestamp Code
Usage

Following the recent Pyth changes related to the Nakamoto upgrade,
the Stacks block timestamp is now used instead of the burnchain
(Bitcoin) block time to determine staleness validation.

This change was implemented in the			 by switching to
			 and			 .

However, some additional changes were not made in the code to fully
reflect this update:

pyth-store-v2

get-stacks-block-info? stacks-block-height

1.	 The			 variable in the				
	 function should be renamed to				
 as the current name is misleading.				
										
										
									

2.	 The current version of the			 contract is v2, but the
internal version comment still incorrectly states:

latest-bitcoin-timestamp pyth-store-v2

batch-entry latest-stacks-

timestamp

(latest-bitcoin-timestamp (unwrap! (get-stacks-block-info? time

(- stacks-block-height u1)) ERR_STALE_PRICE)))

pyth-store-v2

;; Version: v1

Recommendation
Rename the				 variable to
	 in the					 function.
Update the version comment to v2 in			 .

latest-bitcoin-timestamp latest-stacks-

timestamp pyth-store-v2::write-batch-entry

pyth-store-v2

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

39

Description

[QA-03] Project Call To Action References
Outdated Repository

All project contracts include the				 and
		 call-to-action (CTA) links that currently direct users
to the outdated	 repository, rather than the new Trust
Machines repository.

Check for latest version

Report an issue

hirosystems

;; Check for latest version:

// <https://github.com/hirosystems/stacks-pyth-bridge#latest-version>

;; Report an issue: <https://github.com/hirosystems/stacks-pyth-bridge/

issues>

In the unlikely event of any system issues, users would mistakenly
submit their reports to the incorrect repository.

Recommendation
Update all CTAs to direct users to the current repository.

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

40

Description

[QA-04] Error Code Inconsistencies

In the codebase, each contract should have a unique error code
range to easily identify the originating contract of an error. The current
error code ranges implemented are:

wormhole-core-v2		 1000 - 1999 -> start 1001

pyth-governance-v1 	 4000 - 4999 -> start 4001

pyth-oracle-v2 		 400 - 499 -> start 402

pyth-pnau-decoder-v1 	 2000 - 2999 -> start 2001

pyth-store-v2 		 5000 - 5999 -> start 5000

Although the ranges are unique, several minor issues exist:

wormhole-core-v2

•	 There is no range for 3000-3999.
•	 In			 :

◊	 The error code	 is missing between
						 and
							 .
◊	 					 is unused.

u1104

ERR_VAA_CHECKS_REDUNDANT_SIGNATURE

ERR_VAA_CHECKS_GUARDIAN_SET_CONSISTENCY

ERR_VAA_CHECKS_REDUNDANT_SIGNATURE

•	 In			 :
◊	 The				 error () is

placed before error	 instead of between		
	 and	 .

◊	 				 is redundant, as		
				 already exists with the
same logic.							
 					 is also used only
once.						

pyth-governance-v1

ERR_UNAUTHORIZED_ACCESS u4004

u4001

u4003 u4005

ERR_UNEXPECTED_ACTION_PAYLOAD

ERR_INVALID_ACTION_PAYLOAD

ERR_UNEXPECTED_ACTION_PAYLOAD

•	 In			 :
◊	 Error codes are in the hundreds range, while others are

in the thousands range.				
◊	 				 starts at	 instead

pyth-oracle-v2

ERR_BALANCE_INSUFFICIENT u402 u401

•	 In				 :
◊	 		 is unused and has an out-of-range	

value ().						
◊	 			 is unused with an incorrect

comment.
◊	 			 is an error but lacks the		

 prefix.

pyth-pnau-decoder-v1

ERR_NOT_FOUND

u0

ERR_UNAUTHORIZED_FLOW

MERKLE_ROOT_MISMATCH

ERR_

•	 In			 :
◊	 The first error, 				 starts at

base 0 () unlike other contracts.		
◊	 The	 and	 functions both have a

hardcoded		 error with an incorrect range.

pyth-store-v2

ERR_NEWER_PRICE_AVAILABLE

u5000

read get-price

(err u404)

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

41

Recommendation
Implement the following changes:

1.	 Remove		 from all contracts.
2.	 In			 , remove						

and rebase						 to		
		 .

3.	 In			 , move the			
declaration between				 and 			
		 . Also, remove						
and use				 in its place. Ensure all other
errors are correctly rebased afterward.

4.	 Change the		 error code range to 3000-3999 and 	
start				 at	 .

5.	 In				 , remove the 		 and		
	 		 error codes. Rename				
to				 .

6.	 In		 , rebase					 to		
	 . Create an				 error, set it to		
		 and use it in the	 and		

ERR_PANIC

wormhole-core-v2 ERR_VAA_CHECKS_REDUNDANT_SIGNATURE

ERR_VAA_CHECKS_GUARDIAN_SET_CONSISTENCY

(err u1103)

pyth-governance-v1 ERR_UNAUTHORIZED_ACCESS

ERR_INVALID_ACTION_PAYLOAD

ERR_OUTDATED ERR_UNEXPECTED_ACTION_PAYLOAD

ERR_INVALID_ACTION_PAYLOAD

pyth-oracle-v2

ERR_BALANCE_INSUFFICIENT u3001

pyth-pnau-decoder-v1 ERR_NOT_FOUND

ERR_UNAUTHORIZED_FLOW MERKLE_ROOT_MISMATCH

ERR_MERKLE_ROOT_MISMATCH

pyth-store-v2 ERR_NEWER_PRICE_AVAILABLE

u5005 ERR_PRICE_FEED_NOT_FOUND

(err u5006) read get-price

•	 The	 constant is present in several contracts but
is unused.							

ERR_PANIC

These issues complicate debugging for third-party integrators.

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

42

Description

[QA-05] Redeploy Dependency Contracts
for Optimization

In Clarity, there are two methods for calling functions from another
smart contract:

•	 Using only the contract name, without the deployment standard
principal (e.g.,)

•	 Using the full contract principal (e.g.,					
)

.my-contract

ST1PQHQKV0RJXZFY1DGX8MNSNYVE3VGZJSRTPGZGM.my-contract

When the second method is used, the total read costs of the
transaction increase due to the additional data that needs to be copied
between function contract calls.

Throughout the codebase, dependencies are called using their full
contract principal. Examples include:
								 or		
									
 .

This practice increases the overall cost of executing calls through the
oracle contract.

‘SP2J933XB2CP2JQ1A4FGN8JA968BBG3NK3EKZ7Q9F.hk-cursor-v2

‘SP2J933XB2CP2JQ1A4FGN8JA968BBG3NK3EKZ7Q9F.hk-merkle-tree-keccak160-

v1’

Recommendation
Redeploy all the used dependencies locally under the same deployer
address to enable the use of the short contract principal calling
convention.

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

43

Description

[QA-06] Eliminate Unused Constants

The codebase contains several instances of unused constants:

•	 In the			 contract, the constant				
is declared but never utilized.

•	 In				 , the constants	 and			
are also not used.

Recommendation
Remove these constants to enhance code readability, minimize clutter,
and slightly decrease runtime read counts and costs.

wormhole-core-v2 hk-cursor-v2

pyth-pnau-decoder-v1 STX_USD BTC_USD

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

44

Description

[QA-07] Redundant Tuple with One
Element as Map Key

In the			 contract, there is a map of guardian sets
defined as follows:

This map unnecessarily uses a tuple containing only a single element, a
	 uint, instead of using the uint directly. This approach increases
the overall operational cost and reduces code readability.

Recommendation
Modify the map to use a	 as the key instead of a tuple.

wormhole-core-v2

;; Map tracking guardian sets

(define-map guardian-sets

{ set-id: uint }

(list 19 { compressed-public-key: (buff 33), uncompressed-public-key:

(buff 64) }))

set-id

uint

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

45

Description

[QA-08] Incorrect Naming of Update
Function Events

In the			 contract, each update function emits an
event where the	 is named after the function, omitting the
prefix.	

Examples:

pyth-governance-v1

type update-*

•	 		 →			
•	 				 →				
•	 				 →

update-fee-value type: “fee-value”

update-stale-price-threshold type: “stale-price-threshold”

update-wormhole-core-contract type: “wormhole-core-contract”

However, there are two exceptions to this pattern:

•	 		 		 →			
•	 				 →				

update-fee-recipient-address

update-pyth-store-contract type: “pyth-storage-contract”

type: “fee-recipient”

This inconsistency is also found in the			 contract:wormhole-core-v2

•	 		 	 →			 update-guardians-set type: “guardian-set”

Recommendation
To enhance code consistency, modify the	 message in the
command for					 to
and for					 to			 .

Similarly, for			 , change the print message to
		 .

type print

update-fee-recipient-address “fee-recipient-address”

update-pyth-store-contract “pyth-store-contract”

update-guardians-set

“guardians-set”

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

46

Description

[QA-09] Inconsistent Return Values in
Governance Update Functions

In the			 contract, each update function typically
returns the specific data that was updated. However, this consistency
is broken for updates targeting execution plan contracts (whitelisted
contracts). In these instances, the update functions return the entire
update execution plan, which includes four contracts, rather than just
the single updated contract.

pyth-governance-v1

Recommendation
If this behavior is intentional, it should be acknowledged. Otherwise,
modify the return values of the				 ,
				 ,				 ,
and				 functions to 		 .

update-wormhole-core-contract

update-pyth-oracle-contract update-pyth-decoder-contract

update-pyth-store-contract (ok updated-data)

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

47

Within the codebase, the Pyth contract responsible for holding the
prices of each token is referred to as the	 contract,
although its actual name is		 .

This inconsistency in naming conventions reduces the overall
readability of the code.

[QA-10] Inconsistent Reference to Pyth
State Bearing Contract

Description

Recommendation
Rename the		 contract to		 .

storage

pyth-store-v2

pyth-store-v2 pyth-storage-v2

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

48

The codebase contains comments that are either misleading or
outdated.

Instances:
•	

◊	 In				 , the comment		
			 is a leftover from a copy-paste. It should
reference updating the stale price threshold.	
◊	 In				 , the comment		
					 should be			
			 to align with existing commenting patterns.
◊	 In				 , the comment		
					 is a copy-paste remnant. It
should reference updating governance data sources instead.
◊	 In		 , the comment				
is outdated, as no assertions are performed afterward. It should
be removed.

•	
◊	 The function description comment for				
		 is duplicated from					
	 . The comment for 				 should be
rewritten.
◊	 In				 , the comment		
									
is duplicated. For the second check, it should indicate that the
chain is adequate, not the action.

•	
◊	 In		 , the comment				
is outdated, as no assertions are performed afterward. It should
be removed.

[QA-11] Misleading, Outdated, or
Incomplete Comments

Description

pyth-governance-v1

wormhole-core-v2

pyth-pnau-decoder-v1

batch-recover-public-keys

parse-and-verify-guardians-set

;; Ensure that this message is matching the adequate action

update-stale-price-threshold

update-stale-price-threshold

update-governance-data-source

;; Update fee-value

parse-data-source

keys

;; Perform assertions

check-and-consolidate-public-

batch-recover-

public-keys

parse-proof ;; Perform assertions

;; Update fee-recipient address ;; Update fee-

;; Update prices-data-sources

recipient-address

Recommendation
Address the mentioned instances as recommended above.

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

49

To enhance code readability, it is recommended to use meaningful
constants where applicable. Below are instances in the current
codebase where constants can be utilized, along with suggested
names:

•	 In			 :
◊	 At L343, replace							
									
with			 .
◊	 At L346, replace with				 .
◊	 At L349, replace with		 .
◊	 Replace all instances of with				 .

•	 In
◊	 At L452, replace with			 .

•	 In
◊	 At L89 and L120, replace with				
◊	 At L230, replace with				 .
◊	 At L218, L240, and L289, replace	 with

[QA-12] Use Constants Where Appropriate

Description

Recommendation
Implement the suggested changes.

.

.

wormhole-core-v2

pyth-governance-v1

pyth-pnau-decoder-v1

u2

u20

u20

u34

u0

u0

u0

CORE_STRING_MODULE

ACTION_GUARDIAN_SET_UPDATE

GUARDIAN_ETH_ADDRESS_SIZE

SIZEOF_EMITTER_DATA

UPDATE_TYPE_WORMHOLE_MERKLE

MESSAGE_TYPE_PRICE_FEED

MERKLE_PROOF_HASH_SIZE

CORE_CHAIN_ID

0x00436f7265

https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L343
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L346
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/wormhole/wormhole-core-v2.clar#L349
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-governance-v1.clar#L452
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-pnau-decoder-v1.clar#L89
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-pnau-decoder-v1.clar#L120
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-pnau-decoder-v1.clar#L230
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-pnau-decoder-v1.clar#L218
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-pnau-decoder-v1.clar#L240
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/contracts/pyth-pnau-decoder-v1.clar#L289

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

50

Description

[QA-13] Simplification Opportunities in
Code Operations

There are several instances within the codebase where minor
simplifications can be made to improve code readability and, in some
cases, reduce code size.

1.	 In			 , the					
function returns a tuple containing both	 and	 elements.
Since the	 element is never used, the content of	 can
be returned directly. This change alters the function from returning
a cursor to returning direct data.

2.	 In								 the 	 	
		 variable is declared only to be immediately 	
returned. Avoid this redundancy by directly returning the result of
the				 call.

3.	 In					 , the			
value is retrieved three times. Store it as a variable within the
existing	 to avoid repetition.

wormhole-core-v2 parse-and-verify-guardians-set

value next

next value

pyth-pnau-decoder-v1::decode-and-verify-price-feeds

prices-updates

decode-pnau-price-update

pyth-store-v2::write-batch-entry (get publish-time entry)

let

Recommendation
Implement the suggested changes.	 .

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

51

Description

[QA-14] Typographical Errors

There are several typographical errors throughout the codebase:

Recommendation
Correct all the identified typographical errors.

•	 		 should be corrected to		
•	 		 should be corrected to			
•	 	 should be corrected to			
•	 	 should be corrected to				
•	 			 should be corrected to
•	 		 should be corrected to		
•	 	 should be corrected to			
•	 				 should be corrected to

malformatted malformed

informations information

byts bytes

lastest latest

cursor-udpate-type cursor-update-type

Verficiation Verification

expansive expensive

Ensure action’s expectation

Ensure action’s expected

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

52

Description

[QA-15] Merkle Implementation Can
Invalidate Correct Price Updates

When a price update is performed, Merkle validation is conducted on
the resulting data using the				 contract.

In this implementation, when comparing nodes that are each 20 bytes
in length, the value is trimmed to a 16-byte unsigned integer.

Recommendation
Given the extreme unlikelihood of this scenario occurring, and
considering that an alternative price update will be readily available, we
recommend being aware of this situation and acknowledging it.

hk-merkle-tree-keccak160-v1

(define-read-only (buff-20-to-uint (bytes (buff 20)))

(buff-to-uint-be (unwrap-panic (as-max-len? (unwrap-panic

(slice? bytes u0 u15)) u16))))

This trimming is necessary because Stacks does not support integers
larger than 128 bits.

Due to this trimming, theoretically, a valid Merkle root-proofs pair could
be mistakenly identified as invalid by the Stacks implementation. This
occurs because the node traversal may shift in the wrong direction,
resulting in a different ending hash. Consequently, a valid price update
payload could be discarded.

https://github.com/hirosystems/hiro-kit.clar/blob/main/contracts/hk-merkle-tree-keccak160-v1.clar#L7-L8
https://github.com/hirosystems/hiro-kit.clar/blob/main/contracts/hk-merkle-tree-keccak160-v1.clar#L13-L19

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

53

Description

[QA-16] AUWV Price Feed Update Length
Is Not Validated

When updating a price feed within the			 several
checks are performed on the AUWV (Accumulator Update Wormhole
Verification) message. However, one check that is missing is to verify
that the number of feeds encoded within the payload matches the
number of updates actually encoded. I

In theory, a corrupt message could be constructed with a lower actual
feed count embedded. Such a message might have been initially
intended to contain several updates, but by omitting them, it could
cause an upstream revert.

Recommendation
Given the very low likelihood of this scenario occurring, and considering
the already runtime-intensive implementation, this check can be
acknowledged but not necessarily implemented.

If a check is desired, consider the following example:

pyth-pnau-decoder-v1

@@ -36,6 +36,8 @@

(define-constant ERR_INVALID_AUWV (err u2007))

;; Merkle root mismatch

(define-constant MERKLE_ROOT_MISMATCH (err u2008))

+;; Incorrect AUWV payload

+(define-constant ERR_INCORRECT_AUWV_PAYLOAD (err u2009))

;; Price not found

(define-constant ERR_NOT_FOUND (err u0))

;; Price not found

@@ -146,6 +148,7 @@

merkle-root-hash: merkle-root-hash

}))))

(asserts! merkle-proof-checks-success MERKLE_ROOT_MISMATCH)

+ (asserts! (is-eq (get value cursor-num-updates)

+ (len updates)) ERR_INCORRECT_AUWV_PAYLOAD)

 (ok updates)))

(define-private (check-merkle-proof

Note: If the check is added, two tests will fail:
				 and
	 . These tests fail because a different error is raised than
expected, specifically the one addressed in this issue. Both tests
exhibit the issue, as they encode only one price update but note that
they will encode 3 updates.

should fail if the price

price is below stale threshold should fail if PNAU include

mismatches

https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/unit-tests/pyth/pnau.test.ts#L677-L685
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/unit-tests/pyth/pnau.test.ts#L704
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/0d478c94e8c8a70c1dd1ba26fbc5a282e967e38a/unit-tests/pyth/pnau.test.ts#L26-L30

Security Review

Pyth Oracle Client

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. Critical Findings

[C-01] Attacker Can Corrupt Guardian Set
During Update

8.2. High Findings
[H-01] Absence of Pyth Stacks Governance Module
[H-02] Wormhole Contract Vulnerable to Hijacking at
Deployment
[H-03] Limited Price Updates Due to High Runtime
Costs

8.3. Medium Findings
[M-01] Potential Use of Stale Price When
Updating Price
[M-02] Price Update Logic May Cause Denial of
Service
[M-03] Changing Governance Data Source
May Cause Denial of Service in Operations
[M-04] Price Cannot Be Updated During
Guardian Set Transition Period

8.4. Low Findings
[L-01] Inability to Deactivate Price Update Fee
[L-02] Default Price Update Fee Differs From
Documentation
[L-03] Governance Updated Principals Are Not
Validated
[L-04] Parallel Governance Proposals Can Be Blocked
[L-05] Incorrect Validation of Guardian Set
Index Update
[L-06] Incorrect Validation of Guardian Set ChainId
[L-07] Missing Implicit Stale Price Checking API
[L-08] Reconsider Default Fee Receiver and
Stale Price Threshold
[L-09] Missing Overlay Checks on V AA Payloads
[L-10] Incorrect Validation of Minor Version
When Updating Price
[L-11] Wormhole Guardian Set Can Be Updated With
An Empty Set
[L-12] Wormhole Guardian Set Can Contain Duplicate
Entries
[L-13] PTGM Price Data Sources Length Is Not
Validated

8.5. QA Findings
[QA-01] Remove Outdated pyth-p2wh-decoder-v1
Contract
[QA-02] Leftover Bitcoin Timestamp Code Usage
[QA-03] Project Call To Action References
Outdated Repository
[QA-04] Error Code Inconsistencies
[QA-05] Redeploy Dependency Contracts for
Optimization
[QA-06] Eliminate Unused Constants
[QA-07] Redundant Tuple with One Element as Map
Key
[QA-08] Incorrect Naming of Update Function
Events
[QA-09] Inconsistent Return Values in Governance
Update Functions
[QA-10] Inconsistent Reference to Pyth State Bearing
Contract
[QA-11] Misleading, Outdated, or Incomplete
Comments
[QA-12] Use Constants Where Appropriate
[QA-13] Simplification Opportunities in Code
Operations
[QA-14] Typographical Errors
[QA-15] Merkle Implementation Can Invalidate
Correct Price Updates
[QA-16] AUWV Price Feed Update Length Is Not
Validated
[QA-17] Price Update Can Be From The Future

2
3
4
4
4
4
5
5
6
7
8
10
10

12
12
14

15

17
17

19

20

21

22
22
23

24

25
26

27
28
29

30
32

33

34

36

37
37

38
39

40
42

43
44

45

46

47

48

49
50

51
52

53

54

54

Description

[QA-17] Price Update Can Be From The
Future

When updating the price of an asset, several checks are performed
concerning the feed’s publish time. However, one scenario that is not
addressed is when a price marked “from the future” is provided. If such
a price feed, with a publish time set in the future, is used, any new price
updates until that time is reached will be discarded.

This check is not consistently implemented across different Pyth
crosschain versions. For instance, the Ethereum Pyth contracts
do not implement this check, whereas the Fuel blockchain Pyth
implementation does include this check.

For the Stacks blockchain, this check cannot be easily performed
because there is no mechanism to retrieve the timestamp of the
currently executing block, only the timestamp of the last executed
block. In theory, Stacks blocks are minted at a frequency of 5 seconds.
However, real-time data shows variations of up to tens of seconds
between blocks.

There have also been instances where the Stacks blockchain stops
producing blocks and resumes after a significant delay. A real-life
example is Stacks block #242879, which was mined at
			 , followed by the next Stacks block #242880
minted at			 —25 minutes later.

Implementing a mechanism to validate that the price publish time is not
from the future will likely result in normal price update invalidations, as
only the previous block’s timestamp can be used as a reference point,
not the current one.

14:22:53 2024.11.21

14:47:42 2024.11.21

Recommendation
Acknowledge the issue as it is.

https://github.com/pyth-network/pyth-crosschain/blob/1306817cbeba0f1af99a8e55d3515ce3b41a788d/target_chains/ethereum/contracts/contracts/pyth/PythSetters.sol#L14-L28
https://github.com/pyth-network/pyth-crosschain/blob/1306817cbeba0f1af99a8e55d3515ce3b41a788d/target_chains/ethereum/contracts/contracts/pyth/PythSetters.sol#L14-L28
https://github.com/pyth-network/pyth-crosschain/blob/1bad16e87b7fb02db51c5054cbd6d48edc114e9b/target_chains/fuel/contracts/pyth-interface/src/data_structures/price.sw#L178-L181
https://github.com/pyth-network/pyth-crosschain/blob/1bad16e87b7fb02db51c5054cbd6d48edc114e9b/target_chains/fuel/contracts/pyth-interface/src/data_structures/price.sw#L178-L181
https://explorer.hiro.so/blocks?chain=mainnet
https://explorer.hiro.so/block/0xf1bfb6c9983e05ddcbefc95b2b12ea1e90066f14cbc3eeecaeb5bc34a8f68153?chain=mainnet
https://explorer.hiro.so/block/0xa88d6a81777266510a14b37d22ef4822d0512772e51b90e7885cfcc5b1c09641?chain=mainnet

