
GRANITE SECURITY REVIEW

Conducted by:
KRISTIAN APOSTOLOV, Stormy

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

2

Clarity Alliance is a team of expert whitehat hackers specialising in
securing protocols on Stacks.

They have disclosed vulnerabilities that have saved millions in
live TVL and conducted thorough reviews for some of the largest
projects across the Stacks ecosystem.

Learn more about Clarity Alliance at clarityalliance.org.

1. About Clarity Alliance

http://clarityalliance.org

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

3

This report is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. This report is not, nor
should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts
Clarity Alliance to perform a security assessment.

This report does not provide any warranty or guarantee regarding
the absolute bug-free nature of the technology analyzed, nor do
they provide any indication of the technologies proprietors, business,
business model or legal compliance.

This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report
in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive
assessing process intending to help our customers increase the
quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level
of ongoing risk. Clarity Alliance’s position is that each company and
individual are responsible for their own due diligence and continuous
security. Clarity Alliance’s goal is to help reduce the attack vectors and
the high level of variance associated with utilizing new and consistently
changing technologies, and in no way claims any guarantee of security
or functionality of the technology we agree
to analyze.

The assessment services provided by Clarity Alliance are subject to
dependencies and under continuing development. You agree that your
access and/or use, including but not limited to any services, reports,
and materials, will be at your sole risk on an as-is, where-is, and as-
available basis.

Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. The assessment reports
could include false positives, false negatives, and other unpredictable
results. The services may access, and depend upon, multiple layers of
third parties. Notice that smart contracts deployed on the blockchain
are not resistant from internal/external exploit. Notice that active
smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Clarity Alliance does
not guarantee the explicit security of the audited smart contract,
regardless of the verdict.

2. Disclaimer

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

4

3. Introduction

5. Risk Classification

A time-boxed security review of the Granite implementation, where
Clarity Alliance reviewed the scope, whilst simultaneously building
out a testing suite for the protocol.

4. About Granite
The Granite Protocol is an autonomous Bitcoin liquidity protocol
where users can participate as liquidity providers, borrowers, or
liquidators.

The protocol allows borrowers to take stablecoin loans using Bitcoin
as collateral, without exposure to counterparty or rehypothecation
risk. Liquidity providers can earn yield on stablecoins by providing
liquidity to the pool, which is then lent to borrowers.

Loans in Granite are best thought of as lines of credit, without set
terms or repayment schedules. As long as the borrower maintains an
adequate loan-to-value ratio (LTV), keeping their account in good
health, they are not subject to liquidation. If a borrower’s LTV falls
too low, a portion of their capital will be liquidated to bring their
account back to solvency.

Granite enables BTC users to access DeFi without centralized
custodians by leveraging Stacks’ soon-to-be-launched Nakamoto
upgrade and sBTC Bitcoin bridge.

Severity

Likelihood: High

Likelihood: Medium

Impact: High

Critical

High

Impact: Medium

High

Medium

Impact: Low

Medium

Low

Likelihood: Low Medium Low Low

https://sbtc.tech/

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

5

5.1 Impact

•	 High - leads to a significant material loss of assets in the
protocol or significantly harms a group of users.

•	 Medium - only a small amount of funds can be lost (such as
leakage of value) or a core functionality of the protocol is
affected.

•	 Low - can lead to any kind of unexpected behavior with some
of the protocol’s functionalities that’s not so critical.

5.2 Likelihood

5.3 Action required for severity levels

•	 High - attack path is possible with reasonable assumptions
that mimic on-chain conditions, and the cost of the attack is
relatively low compared to the amount of funds that can be
stolen or lost.

•	 Medium - only a conditionally incentivized attack vector, but
still relatively likely.

•	 Low - has too many or too unlikely assumptions or requires a
significant stake by the attacker with little or no incentive.

•	 Critical - Must fix as soon as possible (if already deployed)
•	 High - Must fix (before deployment if not already deployed)
•	 Medium - Should fix
•	 Low - Could fix

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

6

6. Security Assessment Summary

•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

Review Commit Hash:
9c3ffb40858a005e292de432582188c3d3f69289

contracts/liquidator.clar

contracts/borrower.clar

contracts/liquidity-provider.clar

contracts/governance.clar

contracts/state.clar

contracts/meta-governance.clar

contracts/traits/trait-sip-010.clar

contracts/modules/pyth-oracle.clar

contracts/modules/math.clar

contracts/modules/linear-kinked-ir.clar

contracts/staking.clar

contracts/staking-reward.clar

https://github.com/Trust-Machines/granite/commit/9c3ffb40858a005e292de432582188c3d3f69289

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

7

7. Executive Summary
Over the course of the security review, Kristian Apostolov, Stormy
engaged with Trust Machines to review Granite. In this period of time
a total of 12 issues were uncovered.

Protocol Summary

Findings Count

Protocol Name

Severity

Total Findings 12

Amount

Protocol Type

Granite

Lending Market

High 1

Medium 4

Low 2

QA 5

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

8

Summary of Findings

ID

[H-01]

[M-01]

[L-01]

[M-04]

[QA-01]

[QA-02]

[QA-03]

[QA-04]

[QA-05]

[L-02]

[M-02]

[M-03]

Not Calling accrue-interest Before a Safety
Module Balance Mutation

last-accrued-block Not Set When Mutating
interest-accrual-enabled

Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing
Full Collateral Position

Rounding Interest Against Protocol

Bad Debt Socialization Race Condition

Incorrect Interest Read-Only Output

Liquidation Flag Setter Can Be Improved

Market Asset Value Should Be Rounded Up

Simplify socialize-bad-debt

Liquidation Doesn’t Update the User’s
Collateral List if Their Collateral Position
is Reduced to Zero

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

High

Medium

Medium

Medium

Medium

Low

Low

QA

QA

QA

QA

QA

Title Severity Status

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

9

8. Findings

The			 function, which is replicated across most
entry point contracts in the system, calculates the accumulated
interest from the last accrual to the present moment. This interest
is then divided among three distinct groups for OI bookkeeping:

•	 LP: The portion containing interest owed to ordinary LPs.
•	 Staked: Owed to LPs who opted into the safety module, thus

acting as insurers of the system in cases of bad debt accrual.
•	 Protocol: OI attributed to the protocol reserve.

The staking part of the interest is calculated with the following
formula:

where		 is						 , and
			 is a percentage calculated through a
linear slope based on a “utilization” ratio, similar to how ordinary
interest is calculated. In this case, the ratio used is
				 .

Contrary to the general interest slope, the one used in staking
reward calculations is inverted to incentivize a healthy
				 balance in the system.

The issue arises because the protocol does not compound interest
before mutating staked token balances through operations like
	 and		 .

This poses a problem for the system’s interest calculations as it
allows for parameters controlling the OI amounts distributed to
ordinary LPs and staked ones to be manipulated.

8.1. High Findings

[H-01] Not Calling				 Before
a Safety Module Balance Mutation

Description
accrue-interest

lp-interest

stake initiate-stake

total-interest - protocol-interest

staked-lp-tokens / lp-tokens

staked-lp-tokens / lp-tokens

staking-reward-percentage

accrue-interest

(/ (* lp-interest staking-reward-percentage) one-8)

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

10

Recommendation
Consider implementing a copy of		 in
		 and calling it before	 ,		 , and 	
				 .

The above issue could be exploited in one of two scenarios:

•	 Minting Staked Tokens: Sandwiching an accrual event by
minting an amount of staked tokens to extract interest that
belonged to other stakers in the system who were present
for those blocks, thereby lowering the percentage of accrued
interest they are supposed to receive.

•	 Burning Staked Tokens: Sandwiching an accrual event by
burning an amount of staked tokens to avoid reaching as
deeply into the second slope of reward calculation, thus
receiving a slightly lower amount of tokens in return for
providing significantly less security for the protocol’s bad debt
mechanism.

accrue-interest

staking.clar stake unstake

reconcile-lp-token-balance

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

11

The private function				 is called by
		 when a user wants to retrieve some of the
collateral they initially added to the protocol. The purpose of 	
			 is to correctly account for the storage
variables when either a partial or full collateral is being withdrawn.

For security reasons, a governance feature called
			 can temporarily restrict the removal of
collateral from the contracts. However, unlike
	 , this security check is not implemented in the function 	
			 . As a result, even if the removal of
collateral is temporarily disabled by the governance, collateral can
still be removed from the contract by fully withdrawing a collateral
position.

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal
of Collateral is Enabled When Withdrawing
Full Collateral Position

Description

Recommendation
The removal of any collateral from the contracts should not be
allowed when				 is temporarily disabled
by the governance.

remove-user-collateral

remove-user-collateral

remove-collateral-enabled

update-remove-collateral

remove-

collateral-enabled

update-user-

collateral

remove-collateral

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

12

Users are allowed to add up to 10 different collaterals
simultaneously to top up their user positions’		 . When a
position’s collateral amount drops to zero after removing collateral,
the system updates the user’s collateral list by removing the
unused collateral from it.

By examining the			 function, we can see that
the system adjusts the amount of collateral in
accordingly. However, the system does not update the user’s
collateral list when			 drops to zero.

Failing to correctly update the user’s collateral list and remove
the unused collateral may restrict the user’s ability to add another
token as collateral due to the enforced collateral limit per user.

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

Description

We recommend updating the user’s collateral list once the
liquidation reduces a position amount to zero. Otherwise, there
won’t be a way to remove it afterward, which may affect the user’s
ability to add another collateral for use due to overflow when hitting
the collateral list limit.

Recommendation

liquidate-collateral

user-collaterals

user-collaterals

max-ltv

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

13

The function						 and the
market pausing flow it is used in are responsible for pausing a
market in extraordinary scenarios. The issue arises because
		 is not set alongside
in					 . Disabling interest
accrual is likely to be followed by interest parameter mutations
before re-enabling the market’s interest accrual. If
	 is not set to the current block, interest will be accrued for
the period during which it should have been disabled.

This situation could lead to unexpected liquidations, even if the
liquidation warmup has been adjusted accordingly, because users’
health factors will drastically decrease when any of the
	 functions across the system are invoked.

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

Description

Consider setting			 to		 in
					 .

Recommendation

state::set-interest-accrual-enabled

last-accrual-

block

state::set-interest-accrual-enabled

state::set-interest-accrual-enabled

interest-accrual-enabledlast-accrued-block

last-accrued-block block-height

accrue-

interest

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

14

The safety module in the system plays a critical role in addressing
situations where bad debt occurs due to undercollateralized loans.

The issue arises from how the system queues unstaking requests
within the safety module. Specifically, it calculates and saves the
number of LP tokens a user is entitled to receive after the waiting
period ends via the			 function.

This process can inadvertently encourage stakers to frontrun bad
debt liquidation events by calling 			 beforehand,
ensuring they avoid the impending debt socialization.

[M-04] Bad Debt Socialization Race
Condition

Description

Addressing this behavior would require significant code changes
and a redesign of the staking module. Therefore, it may be practical
to acknowledge this limitation within the system and closely
monitor staker activity during bad debt liquidations to mitigate
potential issues.

Granite Team: implemented a withdrawal shares accounting
system to socialize bad debt across both active stakers and those
who are unstaking.

Recommendation

initiate-unstake

initiate-unstake

(lp-tokens-to-return (convert-to-lp-tokens staked-lp-tokens false))

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

15

The protocol calculates how a loan repayment should be split based
on the ratio of principal to interest of the given position using the
following:

The issue here is that			 is determined through round-
down division, which is unfavorable for the protocol. Rounding
down the interest increases the amount of principal being repaid,
thereby reducing the amount of interest generated from keeping
the position active.

[L-01] Rounding Interest Against Protocol

Description

interest-part

(interest-part (/ (* interest-accrued repay-amount) current-debt))

(principal-part (- repay-amount interest-part))

Consider using round-up division in
		 .

Recommendation
math.clar::calculate-

interest-portions

8.3. Low Findings

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

16

The linear interest component of the protocol is calculated using a
variable slope mechanism, which incorporates a kink target and a
constant base rate.

The issue arises because the		 is also added when	 .

Although	 is generally applicable and should be included
in most cases, it should not be added when there are no borrows in
the system.

Since accrued interest is the product of the accumulated interest
and the current OI, this does not impact the protocol’s accounting.
However, it does cause	 to output an invalid value,
potentially leading to confusion when reading it.

[L-02] Incorrect Interest Read-Only Output

Description

Consider returning early in the case of
in				 :

Recommendation

base-ir

base-ir

get-ir

util-with-res == 0

linear-kinked-ir.clar::get-ir

OI == 0

(define-private (ir-calc (util-with-res uint))

(if (is-eq util-with-res u0)

u0

(if

(>= util-with-res (var-get utilization-kink))

(interest-util-geq-kink util-with-res)

(interest-util-less-than-kink util-with-res)

)

)

)

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

17

In the protocol, the			 is a governance function
used to enable or disable the liquidation logic and set an appropriate
liquidation		 when needed. Currently, we use an input
variable cooldown which represents a specific block until which
liquidation will be unavailable. The current design is misleading and
might lead to mistakes.

The		 variable should represent the number of blocks for
which liquidations will be unavailable. When setting
		 , the system should fetch the current
and add the 		 variable to it.

[QA-01] Liquidation Flag Setter Can Be
Improved

Description
set-liquidation-flag

liquidation-

cooldown-block

cooldown

cooldown

cooldown

block-height

// Change `cooldown` to be a diff, i.e., `block-height + cooldown`

(var-set liquidation-cooldown-block (+ block-height cooldown))

Recommendation

8.3. QA Findings

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

18

Currently, the system uses different yet duplicated functions when
adding or removing collateral from the protocol. The functions
				 and
can be merged into a single function called 				 .

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

Description

The merged function should retain the initial logic from
				 , as any attempts to remove
collateral with no position or insufficient collateral will result in a
revert when executing the rest of the logic in the
function.

Recommendation

get-add-collateral-params

get-add-collateral-params

remove-collateral

get-collateral-params

get-remove-collateral-params

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

19

Currently, the mapping			 is used only once
during the borrowing process. This mapping is not necessarily
needed and can be removed. Instead, the positions struct could be
updated to include an additional variable for the user’s last borrowed
block, which will be set when a user borrows.

[QA-03] Usage of Additional Mapping			
		 is Not Necessarily Needed

Description

Remove			 and update the positions struct
with an additional variable to hold the user’s last borrowed block.

Recommendation

user-borrowed-block

user-borrowed-block

user-borrowed-block

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

20

Rounding down occurs when calculating the initial market value of
an asset.

[QA-04] Market Asset Value Should Be
Rounded Up

Description

Ensure that the function			 uses rounding
up.

Recommendation
get-market-asset-value

(ok (/ (* amount market-asset-price) scaling-factor))

Security Review

Granite

CONTENTS
1. About Clarity Alliance

2. Disclaimer

3. Introduction

4. About Granite

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action required for severity levels

6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1. High Findings

[H-01] [H-01] Not Calling accrue-interest
Before a Safety Module Balance Mutation

8.2. Medium Findings

[M-01] Missing Check to Ensure Removal of
Collateral is Enabled When Withdrawing Full
Collateral Position

[M-02] Liquidation Doesn’t Update the
User’s Collateral List if Their Collateral
Position is Reduced to Zero

[M-03] last-accrued-block Not Set When
Mutating interest-accrual-enabled

[M-04] Bad Debt Socialization Race
Condition

8.3. Low Findings

[L-01] Rounding Interest Against Protocol

[L-02] Incorrect Interest Read-Only Output

8.4. QA Findings

[QA-01] Liquidation Flag Setter Can Be
Improved

[QA-02] Duplicated Functions for Fetching
Collateral Parameters Can Be Merged

[QA-03] Usage of Additional Mapping user-
borrowed-block is Not Necessarily Needed

[QA-04] Market Asset Value Should Be
Rounded Up

[QA-05] Simplify socialize-bad-debt

2

3

4

4

4

4

5

5

6

7

7

9

9

11

11

12

13

14

15

15

16

17

17

18

19

20

21

21

Rounding down occurs when calculating the initial market value of
an asset.

[QA-05] Simplify

Description

Consider removing the 			 nesting block and
not passing		 to			 . Instead, call the
function conditionally.

Recommendation
(if (not bad-debt)

bad-debt socialize-bad-debt

(define-private (socialize-bad-debt (bad-debt bool) (user principal))

(if (not bad-debt)

SUCCESS

;; ...

socialize-bad-debt

