
GRANITE-PYTH (UPGRADE) SECURITY REVIEW

Conducted by:
KRISTIAN APOSTOLOV, ALIN BARBATEI (ABA)

AUGUST 15TH, 2025

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

2

Clarity Alliance is a team of expert whitehat hackers specialising in
securing protocols on Stacks.

They have disclosed vulnerabilities that have saved millions in
live TVL and conducted thorough reviews for some of the largest
projects across the Stacks ecosystem.

Learn more about Clarity Alliance at clarityalliance.org.

1. About Clarity Alliance

http://clarityalliance.org

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

3

This report is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. This report is not, nor
should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts
Clarity Alliance to perform a security assessment.

This report does not provide any warranty or guarantee regarding
the absolute bug-free nature of the technology analyzed, nor do
they provide any indication of the technologies proprietors, business,
business model or legal compliance.

This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report
in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive
assessing process intending to help our customers increase the
quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level
of ongoing risk. Clarity Alliance’s position is that each company and
individual are responsible for their own due diligence and continuous
security. Clarity Alliance’s goal is to help reduce the attack vectors and
the high level of variance associated with utilizing new and consistently
changing technologies, and in no way claims any guarantee of security
or functionality of the technology we agree
to analyze.

The assessment services provided by Clarity Alliance are subject to
dependencies and under continuing development. You agree that your
access and/or use, including but not limited to any services, reports,
and materials, will be at your sole risk on an as-is, where-is, and as-
available basis.

Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. The assessment reports
could include false positives, false negatives, and other unpredictable
results. The services may access, and depend upon, multiple layers of
third parties. Notice that smart contracts deployed on the blockchain
are not resistant from internal/external exploit. Notice that active
smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Clarity Alliance does
not guarantee the explicit security of the audited smart contract,
regardless of the verdict.

2. Disclaimer

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

4

3. Introduction
A time-boxed security review of the Pyth Oracle Client
implementation for the Stacks blockchain, where Clarity Alliance
reviewed the scope and provided insights on improving the
protocol.

4. About Pyth Oracle
Pyth Network is an oracle that publishes financial market data to
multiple blockchains. The market data is contributed by over 80 first-
party publishers, including some of the biggest exchanges and market-
making firms in the world. Pyth offers price feeds for several asset
classes, including US equities, commodities, and cryptocurrencies.
Each price feed publishes a robust aggregate of publisher prices that
updates multiple times per second. Price feeds are available on multiple
blockchains and can be used in off-chain applications.

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

5

5.1 Impact

•	 High - leads to a significant material loss of assets in the
protocol or significantly harms a group of users.

•	 Medium - only a small amount of funds can be lost (such as
leakage of value) or a core functionality of the protocol is
affected.

•	 Low - can lead to any kind of unexpected behavior with some
of the protocol’s functionalities that’s not so critical.

5.2 Likelihood

5.3 Action required for severity levels

•	 High - attack path is possible with reasonable assumptions
that mimic on-chain conditions, and the cost of the attack is
relatively low compared to the amount of funds that can be
stolen or lost.

•	 Medium - only a conditionally incentivized attack vector, but
still relatively likely.

•	 Low - has too many or too unlikely assumptions or requires a
significant stake by the attacker with little or no incentive.

•	 Critical - Must fix as soon as possible (if already deployed)
•	 High - Must fix (before deployment if not already deployed)
•	 Medium - Should fix
•	 Low - Could fix

5. Risk Classification

Severity

Likelihood: High

Likelihood: Medium

Impact: High

Critical

High

Impact: Medium

High

Medium

Impact: Low

Medium

Low

Likelihood: Low Medium Low Low

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

6

contracts/pyth-governance-v2.clar

contracts/pyth-pnau-decoder-v2.clar

contracts/wormhole/wormhole-core-v3.clar

6. Security Assessment Summary

The following contracts were in the scope of the security review:

Scope

•	
•	
•	

Initial Commit Reviewed:
5a630a4a6088e84e28a5a99562e9249d7a2517be

Final Commit After Remediations:
1f3a7a93b76e33f648e3c94ba292bdee2f91c58f

https://github.com/Trust-Machines/stacks-pyth-bridge/pull/19/commits/5a630a4a6088e84e28a5a99562e9249d7a2517be
https://github.com/Trust-Machines/stacks-pyth-bridge/commit/1f3a7a93b76e33f648e3c94ba292bdee2f91c58f

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

7

7. Executive Summary
Over the course of the security review, Kristian Apostolov, Alin
Barbatei (ABA) engaged with - to review Pyth Oracle. In this period
of time a total of 16 issues were uncovered.

Protocol Summary

Findings Count

Protocol Name

Severity

Total Findings 16

Amount

Date

Pyth Oracle

August 15th, 2025

Low 1

High

QA

1

14

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

8

Summary of Findings

[H-01] Incorrect Processing of Price Batch
Update Feeds 5 and 6 Resolved

[L-01]
Price Feed Update Verification
Checks Incorrectly Skipped in Certain
Batches

Resolved

[QA-01] Redundant Return Data When
Parsing PTGM Resolved

[QA-02] Reuse Offset Variable in Governance
Data Source Parsing Resolved

[QA-03] Remove Debug Remnants Resolved

[QA-04] Redundant Return Data When
Parsing Merkle Root Data Resolved

[QA-05] Redundant Merkle Ring Size Read
Operation Resolved

[QA-06] Redundant Return Data When
Parsing PNAU Header Resolved

[QA-07] Optimization of Parsing and Verifying
Price Updates Resolved

[QA-08] Wormhole VAA Parsing Can Be
Slightly Improved Resolved

[QA-09] Redundant Reading Operations When
Parsing VAAs Resolved

[QA-10]
Reuse Already Declared
Local Variables When Recovering
Public Key

Resolved

[QA-11] Some Buffer Manipulation Function
Calls Can Be Inlined Resolved

[QA-12] Improve Codebase Comments Resolved

[QA-13]
Miscellaneous Codebase
Improvements for Reducing Runtime
Costs

Resolved

[QA-14] Increment Contract Versions Resolved

ID Title Severity Status

Low

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

High

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

9

In the current implementation for updating price feeds, the caller can
provide up to 6 feeds. However, the logic in
				 incorrectly uses the same offset value when
reading the 4th, 5th, and 6th feed updates. As a result, the 5th and 6th
updates are processed incorrectly and mirror the 4th update.

In the code, the	 and		 feeds use the same offset
as	 :

This leads to any price feed update involving 5 or 6 feeds incorrectly
updating only 4 feeds without returning an error. Integrating systems may
inadvertently use incorrect prices if they rely on
			 to update and retrieve the latest prices,
assuming the input asset price feed order matches the output price
updates index.

Additionally, this bug causes any update with more than 3 feeds to
automatically generate 6 feeds, as feeds 5 and 6 are duplicates of feed 4.

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

Description

8.1. High Findings

8. Findings

pyth-pnau-decoder-v2::

parse-price-info-and-proof

update5 update6

update4

(update4 (unwrap! (read-and-verify-update bytes (+ (message-length update1)
 (message-length update2) (message-length update3) offset)) (ok (list update1 update2 update3
(update5 (unwrap! (read-and-verify-update bytes (+ (message-length update1)
 (message-length update2) (message-length update3) offset)) (ok (list update1 update2 update3
(update6 (unwrap! (read-and-verify-update bytes (+ (message-length update1)
 (message-length update2) (message-length update3) offset)) (ok (list update1 update2 update3

pyth-oracle-v3: : verify-

and-update-price-feeds

Recommendation
Adjust the	 variable to begin parsing at an offset that includes the
length of	 (). Similarly, modify the
	 variable to include the lengths of both	 and
().

update5

update4 (message-length update4)

update6 update4 update5

(message-length update4) (message-length updates)

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

10

[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

Description

Recommendation
Relocate the two checks from the
		 block back into the main body of the
		 function.

(if (or (<= num-updates u3) (is-eq

In the				 decoder contract, when parsing and
verifying feed updates within the					
function, there are two critical checks:

The most important check ensures that the number of feeds to be updated
matches the number of feed data entries provided for the update:

The second check ensures that the parsed buffer does not have any
overlay, which could indicate a potentially corrupt format:

Both of these checks have been moved into an statement and are only
applied if there are fewer than 3 or exactly 6 updates:

By placing the checks within the clause, there is a risk that incorrect
or malformed buffers may be accepted when the number of updates
requested does not match the actual data provided. Although this scenario
is rare and would require the Pyth trusted API to generate such an input
incorrectly, these checks should be applicable in all cases.

pyth-pnau-decoder-v2

parse-and-verify-prices-updates

(asserts! (is-eq num-updates (len updates)) ERR_INCORRECT_AUWV_PAYLOAD)

;;
Overlay check; 1 is added because 1 byte is used to store “cursor-num updates”

(asserts! (is-eq (+ (fold sum-message-length updates u0) u1)
 (len bytes)) ERR_OVERLAY_PRESENT)

if

(if (or (<= num-updates u3) (is-eq num-updates u6))

if

num-updates u6)) parse-and-verify

-prices-updates

8.2. Low Findings

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

11

8.3. QA Findings

[QA-01] Redundant Return Data When
Parsing PTGM

Description
In the			 contract, whenever Pyth governance issues
changes, the payload is read and validated via the
function.

The function returns		 ,		 ,	 ,	
and 	 :

The private				 function is called from nine different
locations. In all these instances, only	 	 and	 are utilized:

The			 can be removed since its sole purpose was to
ensure it was a Stacks governance message, a check already performed
within the			 function. The same applies to
, which is also checked within the function and is not used elsewhere.

The	 value is a leftover from previous versions of the codebase,
where a cursor-like object was used for	 parsing. This has changed,
and currently, the value is both unused and serves no purpose, being
randomly assigned to the target chain id.

Removing these three return entries from the tuple would simplify the code
and slightly reduce execution costs.

pyth-governance-v2

parse-and-verify-ptgm

actions target-chain-id module cursor

body

(ok {
 action: action,
 target-chain-id: target-chain-id,
 module: module,
 cursor: target-chain-id,
 body: body
})))

parse-and-verify-ptgm

action body

target-chain-id

parse-and-verify-ptgm module

cursor

buf

Recommendation
Remove the			 ,	 , and		 entries from the
					 	 return value.

target-chain-id module cursor

pyth-governance-v2:: parse-and-verify-ptgm

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

12

[QA-02] Reuse Offset Variable in Governance
Data Source Parsing

Description
In the						 function, the	
variable is initialized as				 to simplify usage
and reduce fees.

However, within the same code namespace, the operation
		 is redundantly repeated twice more when returning the
	 and			 variables.

This redundancy unnecessarily increases execution costs and decreases
readability.

pyth-governance-v2: : parse-data-source offset

(get index (get cursor acc))

(get index (get

cursor acc))

index next-update-index

cursor: {
 index: (+ (get index (get cursor acc)) u1),
 next-update-index: (+ (get index (get cursor acc)) SIZE_OF_EMITTER_DATA),
},

Recommendation
Utilize the	 variable in the
function when returning the	 and			 variables.

offset pyth-governance-v2:: parse-data-source

index next-update-index

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

13

Description

[QA-03] Remove Debug Remnants

Within the					 function of the
	 contract, a	 statement containing the action
remains as a debug remnant.

parse-and-verify-prices-updates pyth-pnau

-decoder-v2 print test

Recommendation
Eliminate this statement to reduce execution costs and ensure consistency
across the codebase.

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

14

[QA-04] Redundant Return Data When
Parsing Merkle Root Data

Description
In the decoder contract, the function
	 is used to parse the Merkle root. The function returns a tuple
containing the following elements:

However, only the				 is utilized, despite all
elements being returned. The code snippet below demonstrates this
usage:

This results in unnecessary code complexity and a slight increase in
execution fees.

parse-merkle-root-data-from-vaa-

payload

(ok {
value: {

 merkle-root-slot: merkle-root-slot,
 merkle-root-ring-size: merkle-root-ring-size,
 merkle-root-hash: merkle-root-hash,
 payload-type: payload-type
},

 next: merkle-root-hash
})))

value.merkle-root-hash

(cursor-merkle-root-data (try! (parse-merkle-root-data-from-vaa-payload
 (get payload vaa))))
(decoded-prices-updates (try! (parse-and-verify-prices-updates
 (slice pnau-bytes (+ offset u2 pnau-vaa-size) none) (get merkle-root-hash (get value cursor-

Recommendation
Modify the
	 function to return only the			 directly, rather
than a nested tuple.

pyth-pnau-decoder-v2:: parse-merkle-root-data-from-vaa

-payload merkle-root-hash

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

15

In the decoder, the function
is responsible for parsing VAA for Merkle data. Within this function, the
Merkle root ring size is read as follows:

This read operation is redundant because the ring size is not utilized by
Pyth. This behavior aligns with the EVM implementation of Pyth:

Previously, this was retained due to the parsing logic using cursor-
relative indexed processing for buffers/byte arrays. However, with the
new absolute-offset implementation, reading the			 	
variable is unnecessary.

This results in an unnecessary real-time execution cost for each decode
call.

Description

[QA-05] Redundant Merkle Ring Size
Read Operation

Recommendation

parse-merkle-root-data-from-vaa-payload

(merkle-root-ring-size (unwrap!
 (read-uint-32 payload-vaa-bytes u13) ERR_INVALID_AUWV))

// This field is not used
// uint32 ringSize = UnsafeBytesLib.toUint32(encodedPayload, payloadoffset);
payloadOffset += 4;

merkle-root-ring-size

Remove the				 variable and its read operation
entirely from the
	 function. Additionally, include a comment to clarify that this
removal is intentional, ensuring readers understand it is not an oversight
but a deliberate action.

merkle-root-ring-size

pyth-pnau-decoder-v2: :parse-merkle-root-data-from-

vaa-payload

https://github.com/pyth-network/pyth-crosschain/blob/7642a395b965dfbfbf40ea0e1fac462d7016526f/target_chains/ethereum/contracts/contracts/pyth/PythAccumulator.sol#L185-L187

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

16

[QA-06] Redundant Return Data When
Parsing PNAU Header

Description
In the decoder contract, when invoking			 to parse
the PNAU header, the function returns a tuple containing the following
elements:

However, only the	 entry is utilized subsequently, despite all elements
being returned:

This results in unnecessary code complexity and a slight increase in
execution fees.

parse-pnau-header

(ok {
value: {

 magic: magic,
 version-major: version-major,
 version-minor: version-minor,
 header-trailing-size: header-trailing-size,
 proof-type: proof-type
},

 pos: (+ header-trailing-size u8)
})))

pos

(let ((pnau-header (try! (parse-pnau-header pnau-bytes)))
(offset (get pos pnau-header))

Recommendation
Modify the						 function to return
only the required size: 					 , instead of a nested
tuple.

pyth-pnau-decoder-v2:: parse-pnau-header

(+ header-trailing-size u8)

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

17

[QA-07] Optimization of Parsing and
Verifying Price Updates

Description
The			 contract currently incurs high runtime fees.
Despite previous optimizations, the					
and				 functions can be further optimized.
This can be achieved by eliminating the use of the			 and
		 functions and directly calculating the size of
updates during processing.

The proposed optimization includes:

	գ Adding an			 entry in the return of the
	 function, which directly holds the size of the currently
 parsed feed.

Additionally, further runtime optimization can be achieved by storing
					 in a variable, as
also uses this calculation:

	գ In the				 function, add the size to the
offset and increment the offset with each call. Modify the return type
to be a tuple with the cumulative offset for use in the overlay check:

pyth-pnau-decoder-v2

parse-and-verify-prices-updates

parse-price-info-and-proof

message-length

sum-message-length

update-size read-and-verify

-update

update-size: (+ u3 message-size (* MERKLE_PROOF_HASH_SIZE proof-size))

(* MERKLE_PROOF _HASH_SIZE proof-size) proof-bytes

@@ -228,10 +193,8 @@
(ema-price (try! (read-int-64 bytes (+ offset u71))))
(ema-conf (try! (read-uint-64 bytes (+ offset u79))))
(proof-size (try! (read-uint-8 bytes (+ offset u2 message-size))))

- (proof-bytes (default-to 0x (slice? bytes
- (+ offset u3 message-size)
- (+ offset u3 message-size (* MERKLE_PROOF_HASH_SIZE proof-size))
-)))
+ (proof-length (* MERKLE_PROOF_HASH_SIZE proof-size))
+ (proof-bytes (default-to 0x (slice? bytes (+ offset u3 message-size)
+ (+ offset u3 message-size proof-length))))
 (leaf-bytes (default-to 0x (slice? bytes (+ offset u2)
 (+ offset u2 message-size))))
 (proof (get result (fold parse-proof proof-bytes {
 result: (list),
@@ -254,7 +217,8 @@
 ema-price: ema-price,
 ema-conf: ema-conf,
 proof: proof,
- leaf-bytes: (unwrap-panic (as-max-len? leaf-bytes u255))
+ leaf-bytes: (unwrap-panic (as-max-len? leaf-bytes u255)),
+ update-size: (+ u3 message-size proof-length)
 })
))

parse-price-info-and-proof

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

18

(define-private (parse-price-info-and-proof (bytes (buff 8192)))
 (let (

(offset u1)
 (update1 (try! (read-and-verify-update bytes offset)))
- (update2 (unwrap! (read-and-verify-update bytes (+
- (message-length update1) offset)) (ok (list update1))))
- (update3 (unwrap! (read-and-verify-update bytes (+
- (message-length update1) (message-length update2) offset)) (ok (list update1 update2))))
- (update4 (unwrap! (read-and-verify-update bytes (+
- (message-length update1) (message-length update2) (message-length update3) offset)) (ok (lis
- (update5 (unwrap! (read-and-verify-update bytes (+
- (message-length update1) (message-length update2) (message-length update3) offset)) (ok (lis
- (update6 (unwrap! (read-and-verify-update bytes (+
- (message-length update1) (message-length update2) (message-length update3) offset)) (ok (lis
+ (offset-1 (+ offset (get update-size update1)))
+ (update2 (unwrap! (read-and-verify-update bytes offset-1)
+ (ok { offset: offset-1, entries: (list update1)})))
+ (offset-2 (+ offset-1 (get update-size update2)))
+ (update3 (unwrap! (read-and-verify-update bytes offset-2)
+ (ok { offset: offset-2, entries: (list update1 update2)})))
+ (offset-3 (+ offset-2 (get update-size update3)))
+ (update4 (unwrap! (read-and-verify-update bytes offset-3)
+ (ok { offset: offset-3, entries: (list update1 update2 update3)})))
+ (offset-4 (+ offset-3 (get update-size update4)))
+ (update5 (unwrap! (read-and-verify-update bytes offset-4)
+ (ok { offset: offset-4, entries: (list update1 update2 update3 update4)})))
+ (offset-5 (+ offset-4 (get update-size update5)))
+ (update6 (unwrap! (read-and-verify-update bytes offset-5)
+ (ok { offset: offset-5, entries: (list update1 update2 update3 update4 update5)})))

)
- (ok (list update1 update2 update3 update4 update5 update6))
+ (ok { offset: (+ offset-5 (get update-size update6)), entries:
+ (list update1 update2 update3 update4 update5 update6)})
)
)

	գ In the				 	 , retrieve the offset and
include it in the overlay check.

	գ The		 and			 functions can be
removed, and slight modifications are needed when passing the tuple
due to the newly added		 entry.

This optimization reduces both		 and		 costs as
follows:

parse-and-verify-prices-updates

(define-private (parse-and-verify-prices-updates (bytes (buff 8192))
 (merkle-root-hash (buff 20)))
 (let ((num-updates (try! (read-uint-8 bytes u0)))
 (max-updates-check (asserts!
 (<= num-updates MAXIMUM_UPDATES) ERR_MAXIMUM_UPDATES))
- (updates (try! (parse-price-info-and-proof bytes)))
+ (update-data (try! (parse-price-info-and-proof bytes)))
+ (updates (get entries update-data))
 (merkle-proof-checks-success (get result
 (fold check-merkle-proof updates {
 result: true,
 merkle-root-hash: merkle-root-hash
 }))))
 (asserts! merkle-proof-checks-success ERR_MERKLE_ROOT_MISMATCH)
 (asserts! (is-eq num-updates (len updates)) ERR_INCORRECT_AUWV_PAYLOAD)
- (asserts! (is-eq (+ (fold sum-message-length updates u0) u1)
- (len bytes)) ERR_OVERLAY_PRESENT)
+ (asserts! (is-eq (get offset update-data) (len bytes)) ERR_OVERLAY_PRESENT)

(ok updates)

message-length sum-message-length

update-size

read_length runtime

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

19

Metric Before After Reduction

read_length 204162 203615 547 (0.27%)

runtime 5878957 5820855 58102 (0.99%)

Recommendation
Implement the suggested optimization in the codebase to reduce
execution costs.			 .

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

20

[QA-08] Wormhole VAA Parsing Can Be
Slightly Improved

Description
In the					 function, there are several minor
improvements that can enhance uniformity:

1.	 The term			 contains a typo and should be corrected
to			 .

2.	 Introduce a constant, such as			 , for the	
value, which semantically represents

	 .
3.	 Use		 instead of			 when slicing the
	 .

Recommendation
Implement the suggested changes in the codebase.

wormhole-core-v3:: parse-vaa

singnatures-offset

signatures-offset

SIGNATURE_DATA_SIZE u66

(‹guardian_id_1byte | signature

_65bytes)

signatures-len (len signatures)

vaa-body-hash-list

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

21

[QA-09] Redundant Reading Operations
When Parsing VAAs

Description
In the wormhole VAA decoder contract, the		 function returns a
tuple containing the following elements:

Among the returned data, certain elements such as		 ,	
and			 are never utilized, even within the
function itself. These elements are redundant and contribute to increased
execution costs during each VAA parsing:

Additionally, while		 and		 are used within the
	 function, they are not utilized outside of it. Therefore, these
elements, along with		 ,	 ,			 , can be
removed from the return tuple.

Eliminating these unnecessary operations reduces code complexity and
execution fees significantly. For instance, parsing a single feed update
VAA shows the following improvements:

parse-vaa

(ok {
vaa: {
 version: version,
 guardian-set-id: guardian-set-id,
 signatures-len: signatures-len,
 signatures: signatures,
 timestamp: timestamp,
 nonce: nonce,
 emitter-chain: emitter-chain,
 emitter-address: emitter-address,
 sequence: sequence,
 consistency-level: consistency-level,
 payload: payload,

},
 recovered-public-keys: public-keys-results,
})))

timestamp nonce

consistency-level parse-vaa

(timestamp (unwrap!
 (read-uint-32 vaa-bytes singnatures-offset) ERR_VAA_PARSING_TIMESTAMP))
;; ... code ...
(nonce (unwrap! (read-uint-32 vaa-bytes
 (+ singnatures-offset u4)) ERR_VAA_PARSING_NONCE))
(consistency-level (unwrap! (read-uint-8 vaa-bytes
 (+ singnatures-offset u50)) ERR_VAA_PARSING_CONSISTENCY_LEVEL))

signatures-len signature

parse-vaa

timestamp nonce consistency-level

Recommendation
In the					 function, comment out the
	 ,	 , and			 entries, and include a note
explaining their intentional exclusion. Remove these entries from the return
tuple, along with		 and		 which are not used.
Additionally update			 to reflect these changes.

wormhole-core-v3: :parse-vaa

timestamp nonce consistency-level

signatures-len signatures

wormhole-traits-vi

Metric Before After Reduction

read_length 204162 204054 108 (0.05%)

runtime 5696215 5878957 182742 (3.11%)

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

22

[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key

Description
In the						 function, there are two
local variables,		 and		 , which are declared and
used only once:

However, there are two additional instances where, instead of utilizing
these variables, the	 operation is performed again:

wormhole-core-v3:: recover-public-key

signature guardian-id

(signature (get signature entry))
(guardian-id (get guardian-id entry))

get

(let ((recovered-compressed-public-key (unwrap-panic
(secp256k1-recover? message-hash (get signature entry)))))

Recommendation
In the				 		 function, reuse the
	 and		 variables.

wormhole-core-v3: recover-public-key

signature guardian-id

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

23

[QA-11] Some Buffer Manipulation
Function Calls Can Be Inlined

Description
Throughout the codebase, there are instances where function calls to
buffer manipulation functions can be removed or simplified.

In the			 contract:

1.	 The		 function can be eliminated, as it is called only
once from					 Since it is invoked with a
length, it can be directly replaced with a		 call:

2.	 The		 function can be removed, as it is called only once
from			 and can be inlined:

wormhole-core-v3

- (guardians-bytes (unwrap! (read-buff-8192-max bytes u40 (some
- (* guardians-count GUARDIAN_ETH_ADDRESS_SIZE))) ERR_GSU_PARSING_GUARDIANS_

BYTES))
+ (guardians-bytes (unwrap! (read-buff bytes u40
+ (* guardians-count GUARDIAN_ETH_ADDRESS_SIZE)) ERR_GSU_PARSING_GUARDIANS_BYTES))

read-buff-8192-max

parse-and-verify-guardians-set

read-buff

read-buff-65

read-one-signature

- signature: (unwrap-panic (read-buff-65 input u1))
+ signature: (unwrap-panic (as-max-len? (unwrap-panic
+ (slice? input u1 u66)) u65))

pyth-governance-v2

read-buff-8192-max

In the			 contract:

1.	 The			 function can be removed, as it is called only
once from				 . Since it is called without a length,
it can be directly replaced with a native	 call:

parse-and-verify-ptgm

slice

- (body (unwrap! (read-buff-8192-max ptgm-bytes u8 none) ERR_INVALID_PTGM))
+ (body (unwrap! (slice? ptgm-bytes u8 (len ptgm-bytes)) ERR_INVALID_PTGM))

In the			 contract:

1.	 The		 function can be removed, as it is called only
once from				 . Since it is called with a length,
it can be directly replaced with a		 call:

2.	 The	 function can be removed, as it is used only once and can
be replaced with an inline		 call:

pyth-pnau-decoder-v2

read-buff-8192-max

decode-pnau-price-update

read-buff

- (pnau-vaa (try! (read-buff-8192-max pnau-bytes (+ offset u2)
- (some pnau-vaa-size))))
+ (pnau-vaa (try! (read-buff pnau-bytes (+ offset u2) pnau-vaa-size)))

slice

slice?

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

24

;; Invalid PNAU buffer, shorter than required
(define-constant ERR_INVALID_PNAU_BYTES (err u2404))
;; ... code ...
(encoded-price-updates (unwrap! (slice? pnau-bytes (+ offset u2 pnau-vaa-size)
 (len pnau-bytes)) ERR_INVALID_PNAU_BYTES))
(decoded-prices-updates (try!
 (parse-and-verify-prices-updates encoded-price-updates (get merkle-root-hash (get value curs

The unnecessary code complexity and increased fees from these
operations are significant. By removing them, we achieve a reduction in
both runtime execution costs and read length. For example, when parsing
a 1 feed update VAA:

Recommendation
Implement all the mentioned optimizations in the codebase.

Metric Before After Reduction

read_length 204162 201943 2219 (1.09%)

runtime 5878957 5516170 362787 (6.17%)

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

25

[QA-12] Improve Codebase Comments

Description
There are two instances of incorrect comments in the codebase:

1.	 In the			 contract, at line 33, the comment
	 			 is incorrect. It should be updated to
				 .
2.	 In the			 contract, at line 238, the word		

contains a typo and should be corrected to	 .
3.	 The redundant comments			 should be removed from

the			 contract at line 207 and line 380.

pyth-pnau-decoder-v2

;; Merkle root mismatch

Incorrect AUWV message

wormhole-core-v3 atleast

at least

;; Good to go!

wormhole-core-v3

Recommendation
Update the comments as specified above.

https://github.com/Trust-Machines/stacks-pyth-bridge/blob/5ec252b2d9dbed3dcaa12fca8a04b201f60f39ff/contracts/pyth-pnau-decoder-v2.clar#L33
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/5ec252b2d9dbed3dcaa12fca8a04b201f60f39ff/contracts/wormhole/wormhole-core-v3.clar#L238
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/5ec252b2d9dbed3dcaa12fca8a04b201f60f39ff/contracts/wormhole/wormhole-core-v3.clar#L207
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/5ec252b2d9dbed3dcaa12fca8a04b201f60f39ff/contracts/wormhole/wormhole-core-v3.clar#L380

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

26

[QA-13] Miscellaneous Codebase
Improvements for Reducing Runtime Costs

Description
Several minor changes can be implemented to slightly reduce codebase
costs:

1.	 Modify all		 functions to operate without the	 block:

Example change:

From:

To:

2.	 Cache values to reduce runtime costs:

	▪ In						 , the
value is accessed three times. Store it in a variable and reuse it.

	▪ In							 , the
							 calculation is

performed twice. Store it in a			 variable and
reuse it.

	▪ In					 , within the	 branch, store
				 and
		 in variables and reuse them.

3. Merge				 and
	 .

In			 , the				 and
			 functions can be merged, with the
governance check:

inlined within a	 variable. This removes one	 block and one
inner call.

4. Standardize the codebase indentation level and switch to tabs:
	▪ The				 function is indented two levels

more than other functions (after the first).

read-int-* let

(define-private (read-int-32 (bytes (buff 8192)) (pos uint))
(let ((cursor-bytes (try! (read-buff bytes pos u4))))

 (ok (bit-shift-right (bit-shift-left (buff-to-int-be (unwrap-panic
 (as-max-len? cursor-bytes u4))) u96) u96))))

(define-private (read-int-32 (bytes (buff 8192)) (pos uint))
 (ok (bit-shift-right (bit-shift-left (buff-to-int-be (unwrap-panic
 (as-max-len? (try! (read-buff bytes pos u4)) u4))) u96) u96)))

wormhole-core-v3::parse-and-verify-vaa (get vaa message)

vaa

wormhole-core-v3::parse-and-verify-guardians-set

(* guardians-count GUARDIAN_ETH_ADDRESS_SIZE)

guardians-bytes-size

pyth-pnau-decoder-v2::parse-proof else

(get index (get cursor acc)) (get next-update-index (get

cursor acc))

decode-and-verify-price-feeds decode-pnau-price-

update

pyth-pnau-decoder-v2 decode-and-verify-price-feeds

decode-pnau-price-update

(try!
 (contract-call? .pyth-governance-v2 check-execution-flow contract-caller
none))

let begin

wormhole-core-v3: :parse-vaa

let

https://github.com/Trust-Machines/stacks-pyth-bridge/blob/5ec252b2d9dbed3dcaa12fca8a04b201f60f39ff/contracts/pyth-pnau-decoder-v2.clar#L275-L296
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/5ec252b2d9dbed3dcaa12fca8a04b201f60f39ff/contracts/pyth-pnau-decoder-v2.clar#L275-L296

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

27

Reduce the indentation by two levels.
	▪ Refactor all operations that can be condensed into one line without

affecting code readability:
	▪ In								 , the

 				 and
can each be written on one line.

	▪ In						 , the
can be written on a single line.

	▪ Change all contract spaces from two spaces to one tab.

wormhole-core-v3: :parse-and-verify-guardians-set

ERR_GSU_CHECK_MODULE ERR_GSU_CHECK_ACTION asserts

pyth-pnau-decoder-v2:: check-merkle-proof result

Recommendation
Implement the suggested changes.

Security Review

Granite-Pyth
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Pyth Oracle
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Incorrect Processing of Price Batch Update
Feeds 5 and 6

8.2. Low Findings
[L-01] Price Feed Update Verification Checks
Incorrectly Skipped in Certain Batches

8.3. QA Findings
[QA-01] Redundant Return Data When Parsing PTGM
[QA-02] Reuse Offset Variable in Governance Data
Source Parsing
[QA-03] Remove Debug Remnants
[QA-04] Redundant Return Data When Parsing
Merkle Root Data
[QA-05] Redundant Merkle Ring Size Read Operation
[QA-06] Redundant Return Data When Parsing
PNAU Header
[QA-07] Optimization of Parsing and Verifying
Price Updates
[QA-08] Wormhole VAA Parsing Can Be Slightly
Improved
[QA-09] Redundant Reading Operations When
Parsing VAAs
[QA-10] Reuse Already Declared Local Variables
When Recovering Public Key
[QA-11] Some Buffer Manipulation Function Calls
Can Be Inlined
[QA-12] Improve Codebase Comments
[QA-13] Miscellaneous Codebase Improvements for
Reducing Runtime Costs
[QA-14] Increment Contract Versions

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
11
12

13
14

15
16

17

20

21

22

23

25
26

28

28

[QA-14] Increment Contract Versions

Description

Recommendation
Update all contract versions as necessary.

With the recent updates to the contracts, it is necessary to update all
internal and contract name references to reflect the new versions.

Specifically:

	գ Change			 to			 , and update the
internal comment from 		 to		 .

	գ Change			 to			 , and update
the internal comment from			 to		 .

	գ Change			 to				 , and update
the internal comment from		 to		 .

	գ Change			 to			 , and update the
internal comment accordingly.

	գ Change			 to		 , and update the internal
comment accordingly.

	գ Change			 to		 , and update the
internal comment accordingly.

Without these updates, the contracts cannot be deployed from the same
principal as the previous versions, which could also lead to confusion for
integrators.

wormhole-core-v3 wormhole-core-v4

Version: v3 Version: v4

pyth-governance-v2 pyth-governance-v3

Version: v2 Version: v3

pyth-pnau-decoder-v2 pyth-pnau-decoder-v3

Version: v2 Version: v3

wormhole-traits-v1 wormhole-traits-v2

pyth-oracle-v3 pyth-oracle-v4

pyth-storage-v3 pyth-storage-v4

