
GRANITE (UPGRADE) SECURITY REVIEW

Conducted by:
KRISTIAN APOSTOLOV, ALIN BARBATEI (ABA)

FEBRUARY 6TH, 2025

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

2

Clarity Alliance is a team of expert whitehat hackers specialising in
securing protocols on Stacks.

They have disclosed vulnerabilities that have saved millions in
live TVL and conducted thorough reviews for some of the largest
projects across the Stacks ecosystem.

Learn more about Clarity Alliance at clarityalliance.org.

1. About Clarity Alliance

http://clarityalliance.org

Security Review
Granite Pyth
Oracle Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

3

This report is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. This report is not, nor
should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts
Clarity Alliance to perform a security assessment.

This report does not provide any warranty or guarantee regarding
the absolute bug-free nature of the technology analyzed, nor do
they provide any indication of the technologies proprietors, business,
business model or legal compliance.

This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report
in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive
assessing process intending to help our customers increase the
quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level
of ongoing risk. Clarity Alliance’s position is that each company and
individual are responsible for their own due diligence and continuous
security. Clarity Alliance’s goal is to help reduce the attack vectors and
the high level of variance associated with utilizing new and consistently
changing technologies, and in no way claims any guarantee of security
or functionality of the technology we agree
to analyze.

The assessment services provided by Clarity Alliance are subject to
dependencies and under continuing development. You agree that your
access and/or use, including but not limited to any services, reports,
and materials, will be at your sole risk on an as-is, where-is, and as-
available basis.

Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. The assessment reports
could include false positives, false negatives, and other unpredictable
results. The services may access, and depend upon, multiple layers of
third parties. Notice that smart contracts deployed on the blockchain
are not resistant from internal/external exploit. Notice that active
smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Clarity Alliance does
not guarantee the explicit security of the audited smart contract,
regardless of the verdict.

2. Disclaimer

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

4

3. Introduction
A time-boxed security review of Granite Protocol, where Clarity
Alliance reviewed the scope and provided insights on improving the
protocol.

4. About Granite
The Granite Protocol is an autonomous Bitcoin liquidity protocol
where users can participate as liquidity providers, borrowers, or
liquidators.

The protocol allows borrowers to take stablecoin loans using Bitcoin
as collateral, without exposure to counterparty or rehypothecation
risk. Liquidity providers can earn yield on stablecoins by providing
liquidity to the pool, which is then lent to borrowers. Loans in Granite
are best thought of as lines of credit, without set terms or repayment
schedules. As long as the borrower maintains an adequate loan-to-
value ratio (LTV), keeping their account in good health, they are not
subject to liquidation. If a borrower’s LTV falls too low, a portion of
their capital will be liquidated to bring their account back to solvency.

Granite enables BTC users to access DeFi without centralized
custodians by leveraging Stacks’ Nakamoto upgrade and sBTC
Bitcoin bridge.

Security Review
Granite Pyth
Oracle Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

5

5.1 Impact

• High - leads to a significant material loss of assets in the
protocol or significantly harms a group of users.

• Medium - only a small amount of funds can be lost (such as
leakage of value) or a core functionality of the protocol is
affected.

• Low - can lead to any kind of unexpected behavior with some
of the protocol’s functionalities that’s not so critical.

5.2 Likelihood

5.3 Action required for severity levels

• High - attack path is possible with reasonable assumptions
that mimic on-chain conditions, and the cost of the attack is
relatively low compared to the amount of funds that can be
stolen or lost.

• Medium - only a conditionally incentivized attack vector, but
still relatively likely.

• Low - has too many or too unlikely assumptions or requires a
significant stake by the attacker with little or no incentive.

• Critical - Must fix as soon as possible (if already deployed)
• High - Must fix (before deployment if not already deployed)
• Medium - Should fix
• Low - Could fix

5. Risk Classification

Severity

Likelihood: High

Likelihood: Medium

Impact: High

Critical

High

Impact: Medium

High

Medium

Impact: Low

Medium

Low

Likelihood: Low Medium Low Low

Security Review
Granite Pyth
Oracle Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

6

6. Security Assessment Summary

The following contracts were reviewed across multiple pull
requests:

•	

•	

•	

•	

•	

•	

Scope

PR #236

•	 contracts/borrower.clar

•	 contracts/governance.clar

•	 contracts/liquidator.clar

•	 contracts/modules/pyth-adapter.clar

PR #239

•	 contracts/modules/pyth-adapter.clar

PR #249

•	 contracts/modules/pyth-adapter-v1.clar

PR #237

•	 contracts/modules/linear-kinked-ir.clar

•	 contracts/state.clar

PR #244

•	 contracts/borrower-v1.clar

•	 contracts/liquidator-v1.clar

PR #245

•	 contracts/liquidator-v1.clar

Initial Commit Reviewed:
a881f0cdfb0852ac6817cb467c12723730470794

Final Commit After Audit Remediations:
790eb304b03c630a7fd0cd5ece6eb90afd5c83cc

This commit is equivalent to
82737a812c05b4931b28974909bc3ad575e20e56 on the public
GraniteProtocol/core-v1 repository from a smart contract
perspective, with the following minor production-related changes
(also reviewed by us):

• Added SPDX-License-Identifier: BUSL-1.1 copyright.
• Replaced mock-usdc token with

‘SP3Y2ZSH8P7D50B0VBTSX11S7XSG24M1VB9YFQA4K.token-
aeusdc’.

• Replaced the local trait reference .trait-
sip-010.sip-010-trait with the on-chain version
‘SP3FBR2AGK5H9QBDH3EEN6DF8EK8JY7RX8QJ5SVTE.sip-
010-trait-ft-standard.sip-010-trait’.

• Governance proposal acceptance threshold reduced from 66%
to 60%.

https://github.com/Trust-Machines/granite/pull/236
https://github.com/Trust-Machines/granite/pull/239
https://github.com/Trust-Machines/granite/pull/249
https://github.com/Trust-Machines/granite/pull/237
https://github.com/Trust-Machines/granite/pull/244
https://github.com/Trust-Machines/granite/pull/245
https://github.com/GraniteProtocol/granite/tree/a881f0cdfb0852ac6817cb467c12723730470794
https://github.com/GraniteProtocol/granite/tree/790eb304b03c630a7fd0cd5ece6eb90afd5c83cc
https://github.com/GraniteProtocol/core-v1/commit/82737a812c05b4931b28974909bc3ad575e20e56
https://github.com/GraniteProtocol/core-v1

Security Review
Granite Pyth
Oracle Upgrade

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

7

7. Executive Summary
Over the course of the security review, Kristian Apostolov, Alin
Barbatei (ABA) engaged with - to review Granite. In this period of
time a total of 11 issues were uncovered.

Protocol Summary

Findings Count

Protocol Name

Severity

Total Findings 11

Amount

Date

Granite

February 6th, 2025

Low

6

Medium

High

QA

1

3

1

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

8

[H-01] Liquidity Providers Don’t Receive Up-
to- date Interest Resolved

[M-01] Pyth Price Confidence Interval Is Not
Validated Resolved

[M-02] Stale Price May Be Considered Valid Resolved

[M-03] Accruing Interest Does Not Account
for Current Block Resolved

[L-01] Pyth Adapter Staleness Threshold
Limit Is Not Validated Resolved

[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation Resolved

[QA-02] Simplification of Accrue Interest
Operation Resolved

[QA-03] Improve Contract Comments Resolved

[QA-04] Implement a Bulk Read Prices
Function Resolved

[QA-05] Typographical Error Resolved

[QA-06] Overlapping Error Codes With
Dependencies Resolved

Summary of Findings

ID Title Severity Status

Low

Medium

Medium

Medium

High

QA

QA

QA

QA

QA

QA

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

9

Description

[H-01] Liquidity Providers Don’t Receive
Up-to-date Interest

When lenders deposit or redeem through the					
contract, the interest generated from all existing positions is not correctly
compounded before retrieving the data needed to calculate the lenders’
share of assets. This results in inaccurate calculations of the lenders’
portion of shares or required assets.

liquidity-provider-v1

8.1. High Findings

8. Findings

(define-public (deposit (assets uint) (recipient principal))

(let ((asset-params (contract-call? .state-v1 get-lp-params)))

(try! (accrue-interest))

(try!

(contract-call? .state-v1 add-assets contract-caller recipient assets (contract-

SUCCESS

))

(define-public (withdraw (assets uint) (recipient principal))

(let ((asset-params (contract-call? .state-v1 get-lp-params)))

(try! (accrue-interest))

(try!

(contract-call? .state-v1 remove-assets contract-caller recipient assets (contra

 SUCCESS

))

The 				 function call, which requires up-to-date
interest data, is incorrectly executed before the interest is updated via
		 . This can lead to situations where depositors receive
more shares than their deposits are worth.

This issue was identified by the Trust Machines development team during
the last testing phase.

accrue-interest

Recommendation
Invoke 			 before calling 		 in the 		
and		 functions of the 			 contract.

state-v1::get-lp-params

accrue-interest get-lp-params deposit

withdraw liquidity-provider-v1

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

10

Description

[M-01] Pyth Price Confidence Interval Is
Not Validated

Prices provided by the Pyth Network include a level of uncertainty,
represented by a confidence interval.

Currently, the 			 contract implementation only checks for
price freshness and does not validate the confidence level. It is essential
to validate the confidence level to ensure that the price returned by the
network falls within an acceptable range for Granite.

For example, a price for might be with a confidence of	 .
In this scenario, the network is uncertain about the exact price, placing it
within a	 range.

Although such a case would be highly unusual, it is still possible and could
lead to financial losses for users if this price is used in collateral
evaluation.

8.2. Medium Findings

pyth-adapter-v1

Recommendation

STX $3 ± $2

[$5, $1]

In the		 contract, implement a minimum confidence
threshold (price/confidence) that can be updated by governance through
a new action. This threshold should be checked when retrieving prices.
Note that a confidence interval of 0 indicates no spread in price and
should be considered a valid price.

pyth-adapter-v1

https://docs.pyth.network/price-feeds/best-practices#confidence-intervals

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

11

Description

[M-02] Stale Price May Be Considered
Valid

The 			 contract retrieves raw price data from the Pyth
Network and subsequently validates its freshness.

pyth-adapter-v1

(let ((block-timestamp (unwrap-panic (get-stacks-block-info? time
(- stacks-block-height u1)))))
(if (>= timestamp block-timestamp)
true
(> timestamp (- block-timestamp (var-get time-delta))))

)

It is evident that the timestamp for the last Stacks block is used, rather
than the current one. This is because it is not possible to obtain the
			 information of the block in which a transaction is
currently being processed. The timestamp is only generated after the
block is committed to the chain.

This design flaw allows stale price updates to be used when updating
prices in a block, which, if committed to the blockchain, would have a
timestamp exceeding the stale limit.

In theory, Stacks blocks are minted every 5 seconds. However, real-time
data shows variations of up to tens of seconds between blocks.
Additionally, there are instances where the Stacks blockchain stops
producing blocks and resumes after a significant delay. Prices would still
be considered valid, as they are compared against the previous block’s
timestamp.

For example, consider Stacks blocks #242879 and #242880, which are 25
minutes apart. Any price validation done in block 	 would use
block 		 ’s timestamp, resulting in a 25-minute difference. Assuming
a price staleness threshold of 15 minutes, a price updated 10 minutes
before the end of block 	 would be considered valid in block
	 , despite being 35 minutes apart.

The impact is that prices updated between the staleness check limit and
the current block commit would be considered valid, even if they are
logically stale. This may lead to stale prices being used for collateral
evaluation.

stacks-block-height

#242880

#242879

#242879

#242880

Recommendation
Currently, there is no mechanism to determine time-related information
from code running in a transaction that is being executed in the latest
block.

A workaround involves using a variable to denote the Stacks block time
and incorporating it into the block timestamp when checking for
staleness:

https://explorer.hiro.so/blocks?chain=mainnet
https://explorer.hiro.so/blocks?chain=mainnet
https://explorer.hiro.so/block/0xf1bfb6c9983e05ddcbefc95b2b12ea1e90066f14cbc3eeecaeb5bc34a8f68153?chain=mainnet
https://explorer.hiro.so/block/0xa88d6a81777266510a14b37d22ef4822d0512772e51b90e7885cfcc5b1c09641?chain=mainnet

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

12

(define-constant STACKS_BLOCK_TIME u5)

(let ((block-timestamp (+ (unwrap-panic (get-stacks-block-info? time
(- stacks-block-height u1)) STACKS_BLOCK_TIME))))

While the example snippet uses a constant 5 seconds to represent Stacks
block time, a more robust implementation would involve making this
value a variable that can be adjusted by governance. This would allow for
adaptation to different scenarios and blockchain states.

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

13

Description

[M-03] Accruing Interest Does Not Account for
Current Block

In the 						 function, when calculating
elapsed time, the current time is derived using the timestamp of the most
recently added Stacks block:

linear-kinked-ir-v1::accrue-interest

(- (unwrap-panic (get-stacks-block-info? time (- stacks-block-height u1)))

This approach uses the timestamp of the last Stacks block rather than the
current one. This is because it is not possible to obtain
	 information for the block in which a transaction is currently being
processed. The timestamp is only generated after the block is committed
to the chain.

This design allows users to avoid paying interest for the time between the
end of the last block and the execution of the current block.

For example, between Stacks blocks #242879 and #242880, which are 25
minutes apart, a user may choose to fully repay their debt in block

 . Since the accrual only considers the time up to the last block,
25
minutes of interest are not accounted for, benefiting this user as they exit
the market.

At block 	 , the interest calculation would include the missing 25
minutes, only excluding the currently executing block (theoretically 5
seconds of interest).

Due to the way time is captured, users can strategically time their market
exit after a longer gap between blocks to minimize paid interest.

This issue naturally occurs with each operation that calculates interest,
effectively creating an interest lag that benefits users.

Recommendation
As noted in a similar issue, there is currently no mechanism to determine
time-related information from code running in a transaction within the
latest block. A workaround can be implemented by using a variable to
represent the Stacks block time and incorporating it into the block
timestamp when determining elapsed time:

(define-constant STACKS_BLOCK_TIME u5)

(+ (- (unwrap-panic (get-stacks-block-info? time
(- stacks-block-height u1))) STACKS_BLOCK_TIME)

#242880

stacks-block-

height

#242881

https://explorer.hiro.so/block/0xf1bfb6c9983e05ddcbefc95b2b12ea1e90066f14cbc3eeecaeb5bc34a8f68153?chain=mainnet
https://explorer.hiro.so/block/0xa88d6a81777266510a14b37d22ef4822d0512772e51b90e7885cfcc5b1c09641?chain=mainnet

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

14

Notes:

	գ While the example snippet uses a constant 5 seconds to represent
Stacks block time, a more robust implementation would involve using
a variable adjustable by governance to account for different scenarios
and blockchain states.

	գ In 						 , there are three instances
where the current time is captured. If the function is not simplified, all
instances will require this change.

	գ In 		 , there are also two instances where the time is set, and
the same logic must be applied in both cases.

linear-kinked-ir-v1::accrue-interest

state-v1

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

15

Description

[L-01] Pyth Adapter Staleness Threshold Limit Is
Not Validated

8.3. Low Findings

The 			 allows governance to set a staleness
threshold, known as 		 . Currently, there is no validation to
ensure that the provided time is neither too large nor too small.

For instance, setting it too low may lead to continuous protocol reverts.

pyth-adapter-v1

time-delta

Recommendation
When updating the 		 value via
					 , ensure that the 	 		
value is validated to be above a minimum, reasonable value.

time-delta governance-v1::initiate-

proposal-to-update-pyth-time-delta time-delta

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

16

8.4. QA Findings

Description

Recommendation
Address the ambiguities and update the outdated documentation entries
mentioned.

[QA-01] Outdated or Ambiguous Pyth
Adapter Documentation

The current Granite Pyth Adapter documentation contains sections that
are outdated or occasionally ambiguous.

1.	 Under the guidance of Trust Machines, the Stacks Pyth implementation
has been updated, rendering the Staleness Check section outdated.
There is now an API that checks for price freshness, and the Pyth
developers have indicated that the 2-hour staleness check will be
modified before launch.

2.	 The most current version of the Pyth implementation is no longer
maintained by Hiro but by Trust Machines themselves.

3.	 The price feed map associates token principals with feed IDs, not
tickers.

4.	 The 	 function has a parameter named 	 , not

5.	 The 			 function has its first parameter as 		
 ,not				 ; additionally, the
description incorrectly refers to it as a ticker.

6.	 The		 function does not specify the units for the
time difference	 . It is in seconds, but this is not noted.

7.	 The description of the 	 private function does not clearly
define whether being “within the governance-defined validity
threshold” includes accepting prices that are exactly at the delta limit.
The implementation itself does not accept a price exactly at a delta
limit value, only those surpassing it.

read-price token ticker

update-price-feed-id (token

principal) (ticker (string-ascii 10))

update-time-delta

delta

is-valid

https://www.notion.so/a9aa6567d5c24f73a2cadba64b0ff9ac?pvs=21
https://www.notion.so/a9aa6567d5c24f73a2cadba64b0ff9ac?pvs=21
https://github.com/Trust-Machines/stacks-pyth-bridge/blob/ba629c526d870641f08abee3a9a371766c438ea2/contracts/pyth-oracle-v3.clar#L13-L20
https://www.notion.so/a9aa6567d5c24f73a2cadba64b0ff9ac?pvs=21
https://www.notion.so/a9aa6567d5c24f73a2cadba64b0ff9ac?pvs=21
https://www.notion.so/a9aa6567d5c24f73a2cadba64b0ff9ac?pvs=21
https://www.notion.so/a9aa6567d5c24f73a2cadba64b0ff9ac?pvs=21
https://www.notion.so/a9aa6567d5c24f73a2cadba64b0ff9ac?pvs=21
https://www.notion.so/a9aa6567d5c24f73a2cadba64b0ff9ac?pvs=21
https://github.com/Trust-Machines/granite/blob/a881f0cdfb0852ac6817cb467c12723730470794/contracts/modules/pyth-adapter-v1.clar#L93
https://github.com/Trust-Machines/granite/blob/a881f0cdfb0852ac6817cb467c12723730470794/contracts/modules/pyth-adapter-v1.clar#L93
https://www.notion.so/a9aa6567d5c24f73a2cadba64b0ff9ac?pvs=21
https://www.notion.so/a9aa6567d5c24f73a2cadba64b0ff9ac?pvs=21

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

17

[QA-02] Simplification of Accrue Interest
Operation

Description
The current implementation of 					 ,
which is invoked at all critical points, can be streamlined in several ways:

	գ The 	 logic, which includes a premature return in the true	
branch and a 	 declaration in the false branch, can be condensed
into a single, direct declaration with an 	 for the
premature return.

	գ The elapsed block time is redundantly retrieved twice during a full
		 call. By applying the first optimization, the 		
		 variable can be initialized earlier and reused.

	գ The current time (
) is redundantly retrieved three times. 	
Similar to the previous optimization, it should be retrieved once and
stored in a variable.

By implementing these optimizations, the smart contract execution costs
will be reduced, and code readability will be enhanced.

Recommendation

if - else

linear-kinked-ir-v1::accrue-interest

let

let assets!

accrue-interest elapsed-

block-time

(unwrap-panic (get-stacks-block-info? time (-

stacks-block-height u1)))

Implement the suggested changes.

Example of fee reduction if the proposed changes are applied:

(let (
(time-now (unwrap-panic (get-stacks-block-info? time
(- stacks-block-height u1))))

(elapsed-block-time (- time-now last-accrued-block-time))
(premature-return (asserts!
(not (or (is-eq u0 elapsed-block-time) (not
(contract-call? .state-v1 is-interest-accrual-enabled))))

(ok {
last-accrued-block-time: last-accrued-block-time,
lp-open-interest: lp-open-interest,
protocol-open-interest: protocol-open-interest,
staked-open-interest: staked-open-interest,
total-assets: total-assets

})))

As observed through a 	 call:

| Cost | Before | After | Improvement | | --- | --- | --- | --- | | write
_length | 498 | 498 | 0 | | write_count | 10 | 10 | 0 | | read_length | 455427 |
455324 | 103 | | read_count | 147 | 143 | 4 | | runtime | 848993 | 834678 |
14315 |

Improvements in runtime, read counts, and read length have been
achieved.

borrow

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

18

Description

[QA-03] Improve Contract Comments

In the 		 contract, all maps used by the proposal
system are documented with comments, except for the newly added
			 map. To maintain code uniformity,
documentation should also be added to this map.

Recommendation
Add the suggested comment.

governance-v1

update-time-delta-params

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

19

[QA-04] Implement a Bulk Read Prices
Function

Recommendation
Introduce a 			 function in the 			 and utilize
it to verify the existence of prices throughout the codebase.

Description
The current implementation includes a validation for critical
operations that require collateral evaluation, ensuring that all prices are
available. This creates a pre-return scenario if there are issues with any
collateral price.

The current approach is highly inefficient as it sequentially calls the 	 	
	 function for each collateral.

get

price

(position (unwrap! (get user-position borrow-params) ERR-NO-POSITION))
;; ...
(position-collaterals (get collaterals position))
;; ...
(collateral-price-check (try!
 (fold check-collateral-price-exists position-collaterals (ok true))))

;; ...

(define-private (check-collateral-price-exists (collateral principal) (res
(response bool uint)))
(let (
(result (try! res))
(next-result (try! (contract-call? .pyth-adapter-v1 read-price collateral)))

)
(ok true)

)
)

Each call to				 increases runtime costs in an
already complex protocol.

pyth-adapter-v1::read-price

bulk-read-price pyth-adapter-v1

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

20

Description

[QA-05] Typographical Error

The					 function, used throughout the
codebase, contains a typographical error. The word		 should be
corrected to		 .	

check-collteral-price-exists

Recommendation
Correct the identified typo.

collteral

collateral

Security Review
Granite
(Upgrade)

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Granite
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Liquidity Providers Don’t Receive Up-to- date
Interest

8.2. Medium Findings
[M-01] Pyth Price Confidence Interval Is Not
Validated
[M-02] Stale Price May Be Considered Valid
[M-03] Accruing Interest Does Not Account for
Current Block

8.3. Low Findings
[L-01] Pyth Adapter Staleness Threshold Limit Is Not
Validated

8.4. QA Findings
[QA-01] Outdated or Ambiguous Pyth Adapter
Documentation
[QA-02] Simplification of Accrue Interest Operation
[QA-03] Improve Contract Comments
[QA-04] Implement a Bulk Read Prices Function
[QA-05] Typographical Error
[QA-06] Overlapping Error Codes With Dependencies

2
3
4
4
5
5
5
5
6
7
8
9
9

10
10

11
13

15
15

16
16

17
18
19
20
21

21

Description

[QA-06] Overlapping Error Codes With
Dependencies

Granite contracts and Pyth contracts have overlapping error code ranges:

Recommendation
Increase all Granite error code ranges to the tens of thousands, for
instance, change				 to	 .

Granite

state-v1: 		 100
liquidity-provider-v1: 	1000
borrower-v1: 		 2000	
liquidator-v1: 	 3000
governance-v1: 	 4000
meta-governance-v1: 	 5000
staking-v1: 		 6000
linear-kinked-ir-v1: 	 7000
pyth-adapter-v1: 	 8000
staking-reward-v1: 	 9000

wormhole-core-v3: 	 1000
pyth-pnau-decoder-v2: 	2000
pyth-oracle-v3: 	 3000	
pyth-governance-v2: 	 4000
pyth-storage-v3: 	 5000

Pyth

For example, invoking 				 with a Pyth price feed
payload that contains an invalid magic will trigger the error 			
					 .	 . This error code is identical
to 									 ,
which can cause confusion for any third-party integrator.

borrower-v1::borrow

pyth-pnau-

decoder-v2:ERR_MAGIC_BYTES (err u2001)

borrower-v1::ERR-INSUFFICIENT-FREE-LIQUIDITY (err u2001)

liquidity-provider-v1: 1000 10000

