
BITFLOW STABLESWAP SECURITY REVIEW

Conducted by:
KRISTIAN APOSTOLOV, ABA, MARCHEV

SEPTEMBER 25TH, 2024



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

2

Clarity Alliance is a team of expert whitehat hackers specialising in 
securing protocols on Stacks.

They have disclosed vulnerabilities that have saved millions in 
live TVL and conducted thorough reviews for some of the largest 
projects across the Stacks ecosystem.

Learn more about Clarity Alliance at clarityalliance.org.

1. About Clarity Alliance

http://clarityalliance.org


Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

3

This report is not, nor should be considered, an “endorsement” or 
“disapproval” of any particular project or team. This report is not, nor 
should be considered, an indication of the economics or value of any 
“product” or “asset” created by any team or project that contracts 
Clarity Alliance to perform a security assessment.

This report does not provide any warranty or guarantee regarding 
the absolute bug-free nature of the technology analyzed, nor do 
they provide any indication of the technologies proprietors, business, 
business model or legal compliance.

This report should not be used in any way to make decisions around 
investment or involvement with any particular project. This report 
in no way provides investment advice, nor should be leveraged as 
investment advice of any sort. This report represents an extensive 
assessing process intending to help our customers increase the 
quality of their code while reducing the high level of risk presented by 
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level 
of ongoing risk. Clarity Alliance’s position is that each company and 
individual are responsible for their own due diligence and continuous 
security. Clarity Alliance’s goal is to help reduce the attack vectors and 
the high level of variance associated with utilizing new and consistently 
changing technologies, and in no way claims any guarantee of security 
or functionality of the technology we agree
to analyze.

The assessment services provided by Clarity Alliance are subject to 
dependencies and under continuing development. You agree that your 
access and/or use, including but not limited to any services, reports, 
and materials, will be at your sole risk on an as-is, where-is, and as-
available basis.

Cryptographic tokens are emergent technologies and carry with them 
high levels of technical risk and uncertainty. The assessment reports 
could include false positives, false negatives, and other unpredictable 
results. The services may access, and depend upon, multiple layers of 
third parties. Notice that smart contracts deployed on the blockchain 
are not resistant from internal/external exploit. Notice that active 
smart contract owner privileges constitute an elevated impact to any 
smart contract’s safety and security. Therefore, Clarity Alliance does 
not guarantee the explicit security of the audited smart contract, 
regardless of the verdict.

2. Disclaimer



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

4

3. Introduction

5. Risk Classification

5.1 Impact

A time-boxed security review of the Bitflow Stableswap 
implementation, where Clarity Alliance reviewed the scope, whilst 
simultaneously building out a testing suite for the protocol.

4. About Bitflow Stableswap
Bitflow StableSwap is the first protocol designed to enable users 
to efficiently swap stable assets, including stablecoins, within 
the Bitcoin ecosystem. It operates on the Stacks layer, a platform 
specifically designed to facilitate smart contracts and decentralized 
applications on Bitcoin.

•	 High - leads to a significant material loss of assets in the 
protocol or significantly harms a group of users.

•	 Medium - only a small amount of funds can be lost (such as 
leakage of value) or a core functionality of the protocol is 
affected.

•	 Low - can lead to any kind of unexpected behavior with some 
of the protocol’s functionalities that’s not so critical.

Severity

Likelihood: High

Likelihood: Medium

Impact: High

Critical

High

Impact: Medium

High

Medium

Impact: Low

Medium

Low

Likelihood: Low Medium Low Low



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

5

5.2 Likelihood

5.3 Action required for severity levels

•	 High - attack path is possible with reasonable assumptions 
that mimic on-chain conditions, and the cost of the attack is 
relatively low compared to the amount of funds that can be 
stolen or lost.

•	 Medium - only a conditionally incentivized attack vector, but 
still relatively likely.

•	 Low - has too many or too unlikely assumptions or requires a 
significant stake by the attacker with little or no incentive.

•	 Critical - Must fix as soon as possible (if already deployed)
•	 High - Must fix (before deployment if not already deployed)
•	 Medium - Should fix
•	 Low - Could fix



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

6

6. Security Assessment Summary

•	
•	
•	
•	

contracts/stableswap-pool-trait-v-1-1.clar

contracts/stableswap-core-v-1-1.clar

contracts/sip-010-trait-ft-standard-v-1-1.clar

contracts/stableswap-pool-stx-ststx-v-1-1.clar

Review Commit Hash: 
e949a74b25bbe280708685cd7b40aa1b756166d1

https://github.com/BitflowFinance/bitflow-stableswap/


Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

7

7. Executive Summary
Over the course of the security review, Kristian Apostolov, ABA, 
Marchev engaged with Bitflow to review Bitflow Stableswap. In this 
period of time a total of 31 issues were uncovered.

Protocol Summary

Findings Count

Protocol Name

Severity

Total Findings 31

Amount

Repository

Date

Protocol Type

https://github.com/BitflowFinance/bitflow-stableswap

Bitflow Stableswap

September 25th, 2024

Stableswap AMM

High

Critical

2

1

Medium 2

Low 11

QA 15

https://github.com/BitflowFinance/bitflow-stableswap


Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

8

[C-01] Vulnerability in Pool Configuration
When Public Pool Creation is Enabled

Resolved

[H-01] Liquidity Fee Cannot Be Updated
After Pool Creation

Resolved

[H-02] The Fee Schedule is Malfunctioning Resolved

[M-01] Pool Creation Vulnerable to Front-
Running When Public Pool Creation
is Enabled

Resolved

[M-02] Stableswap STX-stSTX Pools are not
SIP-10 Compliant

Resolved

[L-01] Fees are Incorrectly Applied to the
Input Amount on Swaps

Acknowledged

[L-02] Convergence Threshold Cannot Be
Set at Pool Creation

Resolved

[L-03] Pools with an Invalid Fee Structure
Can Be Created

Resolved

[L-04] Pool Validity Check Not Reached for
Invalid Pools

Resolved

[L-05] Pool Symbol and Name Formation
Logic Can Cause DoS in Pool Cre-
ation

Resolved

[L-06] Missing Deadline On Swaps Acknowledged

[L-07] Minimum D Value Check on Invalid
Liquidity Operations is Never 
Reached

Resolved

[L-08] Avoid Using tx-sender for Caller
Identification

Acknowledged

[L-09] MINIMUM_SHARES Enforcement
May Lead to Liquidity Losses

Resolved

[L-10] Lack of Proper Error Handling on
Convergence Failure

Acknowledged

[L-11] Incorrect D Value Stored in Pool Resolved

[QA-01] Protocol Fee Irregularities Acknowledged

[QA-02] Simplification of the remove-admin
Function

Resolved

[QA-03] Use amplification-coefficient instead
of ann in public functions

Resolved

[QA-04] Use Consistent Amount Invalidation
Logic in LP Operations

Resolved

[QA-05] Inefficient Iterative Calculations Acknowledged

Summary of Findings

ID

QA

QA

QA

QA

QA

Title Severity Status

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Critical

High

High

Medium

Medium



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

9

[QA-06] Redundant Third Call to scale-up-
amounts in Liquidity Operation

Acknowledged

[QA-07] Potential Integer Overflow in D
Calculation with High Precision Tokens

Acknowledged

[QA-08] Maintain Proper Codebase Comments Resolved

[QA-09] Remove Redundant Begin Blocks Acknowledged

[QA-10] Non-descriptive BPS Constant 
Names

Resolved

[QA-11] Misleading ann Variable Name Resolved

[QA-12] Rename withdraw-liquidity to
remove-liquidity

Acknowledged

[QA-13] Use Tabs Instead of Spaces Acknowledged

[QA-14] Use a SUCCESS Constant Acknowledged

[QA-15] Typographical Error Resolved

Summary of Findings

ID

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

Title Severity Status



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

10

8. Findings

Creating a Stableswap pool involves the following steps:

•	 Deploying a contract compatible with the 
				             trait.
•	 Calling					             with the 

deployed contract.

Initially, only trusted addresses or administrators are permitted to 
call		       . However, the team can enable public pool 
creation by setting the				      variable to 	        , 
allowing anyone to create pairs.

Within the		     function, the core contract configures the 
pool by invoking all three setters specific to the pool trait:

The current pool implementation in
verifies that the caller is the core contract for all these calls:

By crafting a malicious pool contract, an attacker can exploit these
implementation details to arbitrarily change the configuration of 
any existing pool.

8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration
When Public Pool Creation is Enabled

Description

stableswap-pool-trait-v-1-1

stableswap-core-v-1-1::create-pool

create-pool

create-pool

public-pool-creation

stableswap-pool-stx-ststx-v-1-1

true

(try! (as-contract

(contract-call? pool-trait update-pool-balances x-amount y-amount total-shares)))

(try! (as-contract (contract-call? pool-trait pool-mint

(- total-shares MINIMUM_SHARES) caller)))

(try! (as-contract

(contract-call? pool-trait pool-mint MINIMUM_SHARES pool-contract)))

(let (

(caller tx-sender)

)

(begin

(asserts! (is-eq caller CORE_ADDRESS) ERR_NOT_AUTHORIZED)

;; ... code ...

https://github.com/Clarity-Alliance/bitflow-stableswap-engagement/blob/main/contracts/stableswap-core-v-1-1.clar#L477-L479


Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

11

The core issue is that the authorization check is performed against 
the		   instead of the			       . Consequently, if 
public pool creation is enabled, an attacker can create a malicious 
pool and call 		          with it. Since the core contract calls 
the malicious pool using 		  , the		    is set to the 
core contract. This allows the call to the malicious pool to occur in 
the context of the core contract, enabling further execution to any 
existing pool. As the authorization check is against tx-sender, the 
malicious call is deemed legitimate.

In the proof of concept, the attacker uses the malicious pool to set 
the					     pool liquidity fees to 100% 
and designate themselves as the fee recipient.

tx-sender contract-caller

create-pool

as-contract tx-sender

stableswap-pool-stx-ststx-v-1-1

(define-public (update-pool-balances (x-bal uint) (y-bal uint) (d-val uint))

(let (

(caller tx-sender)

)

(begin

;; ... code ...

;; @audit attacker can set fees to 100% and change who gets them

(try!

(contract-call? .stableswap-pool-stx-ststx-v-1-1 set-liquidity-fee u10000))

(try! (contract-call? .stableswap-pool-stx-ststx-v-1-1 set-fee-address

(var-get theft-address)))

Through this attack, all existing pool configurations can be altered 
to values controlled by the attacker, including the specified pool 
values.

Recommendation
Replace	          with		           in all instances outside 
of the SIP-10 transfer function and contract-deployer type 
variables. After making this change, the use of		  can be 
removed from the calls to the pool trait within		            .

contract-caller

create-pool

as-contract

tx-sender



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

12

Implement a			        function in the
			      contract to allow contract administrators 
to update liquidity fees for existing pools.

The					       contract permits the 
updating of liquidity fees through the		                      function. 
This function is restricted and can only be invoked by the 		
			      contract.

However, the				      contract only calls 		
	          	          during the pool creation process within its 	
	            function. Unlike other pool parameters, which are 
configurable and have corresponding setter functions, there is no 
function available to update the liquidity fee for an existing pool.

8.2. High Findings

[H-01] Liquidity Fee Cannot Be Updated
After Pool Creation

Description
stableswap-pool-stx-ststx-v-1-1

create-pool

set-liquidity-fee

set-liquidity-fee

set-liquidity-fee

stableswap-core-v-1-1

stableswap-core-v-1-1

stableswap-core-v-1-1

Recommendation



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

13

Ensure the correct fee schedule is applied according to the swap 
direction. The following functions should be reviewed and updated 
as necessary:

•	
•	
•	
•	

[H-02] The Fee Schedule is Malfunctioning

The				    smart contract is intended to enable 
Stableswap pools to apply different fees based on the swap 
direction. It specifies the following fees:

•	
•	
•	
•	

However, the current implementation incorrectly applies 		
	       	    and			   for both swap directions. 
The		             and		           are defined but remain 
unused within the contract. Consequently, the protocol’s fee 
schedule mechanism is malfunctioning, resulting in the incorrect 
application of fees.

Description
.stableswap-core-v-1-1

y-protocol-fee

swap-x-for-y

y-protocol-fee y-provider-fee

x-protocol-fee

get-dy

x-protocol-fee

y-provider-fee

swap-y-for-x

x-provider-fee

get-dx

x-provider-fee

Recommendation



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

14

Store the contract deployer in a constant within the 
				            contract. When
						              is called, also 
pass the caller principal (taken as		            , not
	       ) from the core contract. Using these two, verify that the	
				           	   caller is the same as the 	
				            deployer.

Due to the absence of support for dynamically deploying contracts 
via Clarity code, the creation of a Stableswap pool occurs in two 
distinct steps, each requiring a separate transaction:

•	 Deploy the pool that implements the
trait.

•	 Set up the Stableswap pool by invoking the
					              function.

A vulnerability arises when pool creation is publicly enabled 
(i.e., the			       flag is set to	           ) because 
the second step can be front-run. This poses a problem because 
critical configurations, such as the fee schedule and fee recipient 
address, are established during pool creation. This vulnerability 
allows a malicious actor to effectively take over deployed pools
or, at the very least, disrupt their creation.

Although the mentioned configurations can be subsequently 
modified and corrected by a protocol admin, with
			     enabled, pool creation should be 
permissionless and not depend on admin intervention, which 
could potentially be required for each and every pool.

Rectifying pools that have been taken over would become 
impractical and burdensome for the protocol owners.

8.3. Medium Findings

[M-01] Pool Creation Vulnerable to Front-
Running When Public Pool Creation is
Enabled

Description

stableswap-pool-trait

stableswap-core-v-1-1::create-pool

stableswap-core-v-1-1::create-pool

public-pool-creation

public-pool-creation

true

Recommendation

stableswap-pool-stx-ststx-v-1-1

stableswap-pool-stx-ststx-v-1-1

stableswap-pool-stx-ststx-v-1-1 ::create-pool

contract-caller

tx-sender



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

15

Example implementation:

--- a/contracts/stableswap-core-v-1-1.clar

+++ b/contracts/stableswap-core-v-1-1.clar

@@ -466,7 +466,7 @@

	 (asserts!

	 (is-eq x-balance-scaled y-balance-scaled) ERR_UNEQUAL_POOL_BALANCES)

	 (asserts! (> total-shares MINIMUM_SHARES) ERR_MINIMUM_LP_AMOUNT)

	 (asserts! (> (len uri) u0) ERR_INVALID_POOL_URI)

- 	 (try! (as-contract

- (contract-call? pool-trait create-pool x-token-contract y-token-contract fee-address

+ 	 (try! (as-contract

+ (contract-call? pool-trait create-pool x-token-contract y-token-contract fee-address

	 (try! (as-contract

	   (contract-call? pool-trait set-x-fees x-protocol-fee x-provider-fee)))

	 (try! (as-contract

	   (contract-call? pool-trait set-y-fees y-protocol-fee y-provider-fee)))

	 (try! (as-contract

	   (contract-call? pool-trait set-liquidity-fee liquidity-fee)))

--- a/contracts/stableswap-pool-stx-ststx-v-1-1.clar

+++ b/contracts/stableswap-pool-stx-ststx-v-1-1.clar

@@ -10,10 +10,12 @@

(define-constant ERR_INVALID_PRINCIPAL (err u1003))

(define-constant ERR_POOL_NOT_CREATED (err u3002))

(define-constant ERR_POOL_DISABLED (err u3003))

+(define-constant ERR_NOT_POOL_DEPLOYER (err u3004))

(define-constant CORE_ADDRESS .stableswap-core-v-1-1)

(define-constant BPS u10000)

+(define-constant CONTRACT_DEPLOYER tx-sender)

(define-data-var pool-id uint u0)

(define-data-var pool-name (string-ascii 256) “”)

@@ -296,12 +298,14 @@

       (name (string-ascii 256)) (symbol (string-ascii 256))

       (uri (string-utf8 256))

       (status bool)

+      (core-caller principal)

    )

    (let (

       (caller tx-sender)

    )

       (begin

	 (asserts! (is-eq caller CORE_ADDRESS) ERR_NOT_AUTHORIZED)

+ 	 (asserts! (is-eq core-caller CONTRACT_DEPLOYER) ERR_NOT_POOL_DEPLOYER)

	 (var-set pool-id id)

	 (var-set pool-name name)

	 (var-set pool-symbol symbol)



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

16

Modify the					       and
	           contracts so that the		    and
functions are SIP-10 compliant by limiting their maximum length to 
32 characters.

Additionally, since the transfer will already fail if the amount is 0,
remove the			         check. Change
to return        and have				      be the next 
incremental available value, meaning	      .

This issue is also present in the			               function.

Third-party protocols may experience unexpected side effects due 
to these issues when integrating with the Stableswap pool.

[M-02] Stableswap STX-stSTX Pools are
not SIP-10 Compliant

The Stableswap pool contract
implements the				         trait, which is a 
subset of the SIP-10 trait. However, the current implementation 
is not SIP-10 compliant due to the way the trait functions are 
declared in the				       trait.

The		    and		        functions can return up to 256 
ASCII characters, whereas SIP-10 specifically limits these to a 
maximum of 32 characters.

Another compliance issue is that the SIP-10
			      function returns incorrect error code 
ranges. The standard specifies that error codes should start from 
1 and increase incrementally, with the first four values already 
defined in the SIP.

However, the mentioned	           function returns three 
different error codes outside the indicated range. It also overrides 
the SIP’s error code for an amount greater than 0 (
		  ) with			             of	    and the 
					                 error with
			   of 	     .

Description
stableswap-pool-stx-ststx-v-1-1

stableswap-pool-stx-ststx-v-1-1

stableswap-pool-stx-

ststx-v-1-1::transfer

stableswap-pool-trait-v-1-1

stableswap-pool-

trait-v-1-1

stableswap-pool-trait 

amount is u3:

non-positive

get-name

get-name

u4

u5

transfer

u1002ERR_INVALID_AMOUNT

ERR_INVALID_AMOUNT

ERR_INVALID_PRINCIPAL

ERR_NOT_AUTHORIZED

ERR_NOT_AUTHORIZED u1001

u4: sender is not the same as tx-sender

token-stx-v-1-1::transfer

get-symbol

get-symbol

Recommendation

(get-name () (response (string-ascii 256) uint))

(get-symbol () (response (string-ascii 256) uint))

(asserts! (is-eq caller sender) ERR_NOT_AUTHORIZED)

(asserts! (is-standard sender) ERR_INVALID_PRINCIPAL)

(asserts! (is-standard recipient) ERR_INVALID_PRINCIPAL)

(asserts! (> amount u0) ERR_INVALID_AMOUNT)

https://github.com/stacksgov/sips/blob/main/sips/sip-010/sip-010-fungible-token-standard.md#trait-implementation
https://github.com/stacksgov/sips/blob/main/sips/sip-010/sip-010-fungible-token-standard.md#trait-implementation
https://github.com/stacksgov/sips/blob/main/sips/sip-010/sip-010-fungible-token-standard.md#transfer


Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

17

•	 The amount of	 the user should receive before any fees is 
thus:

The user receives 150 tokens of      , and 17 tokens are collected as 
fees.

In the current implementation of the Stableswap core, fees are 
mistakenly applied to the input token amount instead of the output 
token amount.

When fees are applied to the input token before the swap, the 
user receives more output tokens than intended, which reduces 
the total fees collected by the protocol and the liquidity providers.

This issue is subtle when the pool is balanced and behaves like a 
constant sum AMM. However, it becomes pronounced when the 
pool is unbalanced and the curve behaves more like a constant 
product AMM.

Consider the following example. For simplicity, we will 
demonstrate the issue with a constant product AMM:

Let’s have an x * y = k pool with a fee of 10%, where x = 1000 and 
y = 1000.

Correct Fee Application

•	 The user swaps 200 tokens of      .
•	 Without fees, the new reserves of	     and	     are calculated as 

follows:

8.4. Low Findings

[L-01] Fees are Incorrectly Applied to the
Input Amount on Swaps

Description

X

X Y

Y

Y

x’ = 1000 + 200 = 1200

y’ = k/x = (1000 * 1000) / 1200 = 833

dy = 1000 - 833 = 167



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

18

Incorrect Fee Application

•	 The user swaps 200 tokens of     .
•	 The 10% fee is applied to the input amount, thus:

•	 The new reserves of       and      are calculated as follows:

•	 The amount of	 the user should receive is:

The user receives 153 tokens of      , which is 3 tokens more 
compared to the scenario where fees are applied after the swap. 

Note: For comparison, in Curve’s Stableswap implementation, fees 
are applied to the output amount.

X

X Y

Y

Y

x’ = 1000 + 180 = 1180

y’ = k/x = (1000 * 1000) / 1180 = 847

dy = 200 * 0.9 = 180

dy = 1000 - 847 = 153

Modify the fee logic so that fees are applied to the output amount 
rather than the input amount.

Recommendation

https://github.com/curvefi/curve-stablecoin/blob/202c75b115d44c1b961eab57fb13d8ae4ccaa050/contracts/Stableswap.vy#L803-L808
https://github.com/curvefi/curve-stablecoin/blob/202c75b115d44c1b961eab57fb13d8ae4ccaa050/contracts/Stableswap.vy#L803-L808


Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

19

Include an optional argument in the
function to allow setting the convergence threshold.

[L-02] Convergence Threshold Cannot Be
Set at Pool Creation

When a pool is created, the caller can specify almost all configurable 
parameters except for the convergence threshold. This threshold 
is set to a default value of    and can only be modified by the 
administrators of the Stableswap Core contract.

Once pool creation becomes publicly accessible (via the		
			     variable), users should have the ability to 
adjust the default value, at least during the initial pool creation.

Having a configuration that cannot be set initially reduces the 
flexibility for third-party integrators and places an additional burden 
on existing administrators to modify the setting if necessary.

Description

public-pool-creation

Recommendation
stableswap-core-v-1-1::create-pool

2



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

20

Implement input validations for protocol and provider fees during 
pool creation and fee updates.

Ensure these fees do not exceed	      ( 	        basis points).

Additionally, ensure that both provider and protocol fees, 
cumulatively, do not exceed	          , as they are both calculated 
and withdrawn from the same amount.

[L-03] Pools with an Invalid Fee Structure
Can Be Created

Throughout the codebase, there is no validation for the protocol 
and provider fees—they are accepted as provided.

This could be particularly problematic when			 
is enabled. The absence of validation allows pools with invalid fee 
structures to be created, where the fees exceed	      basis 
points (		 ).

Such invalid fees would cause transactions to revert during swaps 
because the fee amounts would be greater than the swap input 
amount, leading to failed swaps.

Description

public-pool-creation

Recommendation

u1000

u1000

BPS_1

BPS_1

BPS_1



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

21

To address this, move the		          check/call from the 
ending		 block to the leading	     block in the functions
	 ,	  ,	     ,		       ,		        , 
		  , and			         , using a placeholder 
value.

Here is an example of how to apply this change to the
function:

[L-04] Pool Validity Check Not Reached for
Invalid Pools

When interacting with a pool that has not been properly 
initialized—meaning the pool contract was deployed, but 		
					     was not called—the error 
		         should be returned. However, during core 
operations such as swapping, adding, and removing liquidity, the
validation performed by		      is never reached for an 
uninitialized pool. This is because the transaction reverts before 
reaching that point due to a divide-by-zero runtime error when 
calculating the new D value. This makes it more challenging to 
identify the correct issue when an error occurs.

Description

Recommendation

stableswap-core-v-1-1::create-pool

ERR_INVALID_POOL

is-valid-pool

is-valid-pool

begin

get-dy get-dx get-dlp swap-x-for-y swap-y-for-x

add-liquidity

add-liquidity

withdraw-liquidity

let

@@ -663,6 +663,7 @@

   )

   (let (

     (pool-data (unwrap! (contract-call? pool-trait get-pool) ERR_NO_POOL_DATA))

+ (pool-validity-check (asserts! (is-valid-pool (get pool-id pool-data)

+ (contract-of pool-trait)) ERR_INVALID_POOL))

(pool-contract (contract-of pool-trait))

(fee-address (get fee-address pool-data))

(x-token (get x-token pool-data))

@@ -712,7 +713,6 @@

(caller tx-sender)

   )

(begin

- 	 (asserts! (is-valid-pool (get pool-id pool-data)

- (contract-of pool-trait)) ERR_INVALID_POOL)

	 (asserts! (is-eq (get pool-status pool-data) true) ERR_POOL_DISABLED)

	 (asserts! (is-eq

	   (contract-of x-token-trait) x-token) ERR_INVALID_X_TOKEN)

	 (asserts! (is-eq

	   (contract-of y-token-trait) y-token) ERR_INVALID_Y_TOKEN)



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

22

Modify the symbol and name creation logic to ensure that the 
resulting symbol/name does not exceed 32 characters. This can be 
achieved by implementing a trimming logic.

[L-05] Pool Symbol and Name Formation
Logic Can Cause DoS in Pool Creation

When a pool is created in the core contract, the pool symbol is 
determined by concatenating the symbols of the two tokens using 
the private function		            . The name is then formed by 
appending	      to the symbol.

Since the symbols are arbitrary and externally controlled, two valid 
token symbols may create an invalid pool token/name symbol by 
exceeding the current limit of 256 characters, causing the pool 
creation to revert.

Note: There is a separate issue where the pools themselves 
are not SIP-10 compliant due to allowing symbols/names longer 
than 32 characters. Even if that is addressed, without modifying 
the symbol and name creation logic to trim the resulting 
concatenation to fit within 32 characters, the pools would either 
remain non-SIP-10 compliant or simply revert.

Description

Recommendation

“-LP”

create-symbol



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

23

Add a deadline parameter for the		        and
swap functions.

Normally, in decentralized exchanges, the deadline parameter 
represents a timestamp. Either use the more unreliable block height 
for a deadline logic or wait until Nakamoto is deployed and use the 
newly-introduced block timestamp.

[L-06] Missing Deadline On Swaps

The		          and		     swap functions from the 
core contract are missing an equivalent deadline parameter. As 
such, a user may submit a swap which will remain in the mempool 
for an extended period of time and be eventually executed at at 
an inconvenient time for users.

Example, users wants to swap 1000 USDa tokens for 1000 USDb 
tokens. He submits the swap but it is not picked up by any miners. 
Due to extreme market conditions, USDb depegs. At this point the 
swap is carried out and since the Stableswap logic does not take 
into consideration any external oracle prices, the user’s swap is 
now done resulting losses for him.

Description

Recommendation

swap-x-for-y

swap-x-for-y

swap-y-for-x

swap-y-for-x



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

24

Move the			        check, found in the
an	         functions, from the ending	   block to the 
block, immediately before calculating the LP number to mint, using 
a placeholder value.

Example:

[L-07] Minimum D Value Check on Invalid
Liquidity Operations is Never Reached

When adding liquidity, an updated D value is calculated and 
checked against its previous value to ensure it is higher.

However, this check is performed after a subtraction of the values 
has already occurred:

As a result, the				    error will never be triggered 
when the new D value is lower than the old one, as the transaction 
would have already reverted with a panic due to the previous 
subtraction. This makes it more challenging to identify the correct 
issue in the event of an error.

Description

Recommendation

ERR_MINIMUM_D_VALUE

ERR_MINIMUM_D_VALUE add-liquidity

get-dlp begin let

(asserts! (> updated-d d-a) ERR_MINIMUM_D_VALUE)

(dlp (/ (* total-shares (- updated-d d-a)) d-a))

@@ -708,6 +708,7 @@

	 (updated-pool-balances-post-fee

	    (scale-down-amounts updated-balance-x-post-fee-scaled updated-balance-y-post-fe

	 (updated-x-balance-post-fee (get x-amount updated-pool-balances-post-fee))

	 (updated-y-balance-post-fee (get y-amount updated-pool-balances-post-fee))

+ 	 (minimum-d-check (asserts! (> updated-d d-a) ERR_MINIMUM_D_VALUE))

	 (dlp (/ (* total-shares (- updated-d d-a)) d-a))

	 (caller tx-sender)

      )

@@ -712,7 +713,6 @@

	 (asserts! (is-eq

	    (contract-of y-token-trait) y-token) ERR_INVALID_Y_TOKEN)

	 (asserts! (or (> updated-x-amount u0)

	    (> updated-y-amount u0)) ERR_INVALID_AMOUNT)

	 (asserts! (> min-dlp u0) ERR_INVALID_AMOUNT)

- 	 (asserts! (> updated-d d-a) ERR_MINIMUM_D_VALUE)

	 (asserts! (>= dlp min-dlp) ERR_MINIMUM_LP_AMOUNT)

	 (if (> updated-x-amount u0)



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

25

Use			   instead of	            in all instances, except 
within the SIP-10 transfer function and contract-deployer type 
variables.

[L-08] Avoid Using		           for Caller
Identification

Throughout the contract, there are instances where 		         is 
used instead of		        or passing the caller’s address. 
This practice can lead to security vulnerabilities, as users who fall 
victim to phishing scams and interact with malicious contracts 
may inadvertently execute sensitive operations within the 
codebase.

For example, a user interacting with a malicious contract 
could unknowingly allow that contract to initiate liquidity pool 
withdrawals on their behalf via the 
			   function.

Similarly, if an admin interacts with a malicious contract, the 
contract could call the
function and redirect the fee receivers to its own address, 
resulting in a loss of funds for the protocol team.

It is important to note that these scenarios require negligence on 
the part of the admin or user.

Description

Recommendation

tx-sender

stableswap-core-v-1-1:

:withdraw-liquidity

stableswap-core-v-1-1:::set-fee-address

tx-sender

contract-caller

contract-caller transfer



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

26

To address the inconsistency in enforcing		             ,
implement scaling of the		          based on token 
decimals. The			     constant should be adjusted to 
match the precision of the token with the higher	          .

[L-09] MINIMUM_SHARES Enforcement
May Lead to Liquidity Losses

In the StableSwap			             contract, there is an 
assertion that requires the total shares of a liquidity provider (LP) 
to exceed a minimum threshold:

The issue arises because the			      amount does not 
consider the precision/decimals of the pool tokens. Consequently, 
this mechanism has varying effects depending on the precision of 
the tokens involved in the pool.

For low-precision tokens (e.g.,			    ), the initial liquidity
requirement can be problematic, as it may create a significant 
barrier to entry for creating the pool.

Additionally, this minimum amount of shares is minted directly to 
the pool itself, effectively reducing the liquidity available to the 
pool creator:

As a result, this could lead to a significant loss of funds for the 
pool creator if they are unaware of this behavior.

Conversely, if the pool consists of high-precision tokens, the same
		      value becomes insufficient to represent even 
a minimal amount of liquidity. For example, in a pool with two 
tokens,	           and 	     , each having		         , this
results in a minimal liquidity requirement of
tokens, which is worth approximately $2.6e^{-9}$, or effectively 
dust.

The current implementation does not account for the varying 
decimal places of different tokens, leading to disproportionate 
minimum liquidity requirements based on token precision. This 
inconsistency can hinder the efficient bootstrapping of liquidity 
pools and negatively impact the overall user experience.

Description

Recommendation

stableswap-core-v-1-1

MINIMUM_SHARES

MINIMUM_SHARES

MINIMUM_SHARES

MINIMUM_SHARES

MINIMUM_SHARES

decimals

sETH stETH

decimals == 2

(asserts! (> total-shares MINIMUM_SHARES) ERR_MINIMUM_LP_AMOUNT)

(try! (as-contract (contract-call? pool-trait pool-mint

  (- total-shares MINIMUM_SHARES) caller)))

(try! (as-contract

  (contract-call? pool-trait pool-mint MINIMUM_SHARES pool-contract)))

decimals() = 18

0.000000000001



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

27

Modify the implementation so that when the Newton-Raphson 
method fails to converge, it reverts or throws an explicit error 
instead of returning 0 and eventually causing a division by zero 
error. This approach clearly indicates that the pool is in an invalid 
state, signaling to LPs to safely withdraw their funds using the 	
		             function.

A similar approach is employed by Curve’s original StableSwap
implementation:

From an implementation perspective, modify the	        function 
to return a				           type and have it return 
an error if the			       end result is 0. In all places except 	
		            , further revert the execution.

[L-10] Lack of Proper Error Handling on
Convergence Failure

In the StableSwap			              contract, the invariant 	
     convergence calculation uses the Newton-Raphson method 
to iteratively solve for the invariant. In rare cases where the pool 
becomes significantly unbalanced, the Newton-Raphson method 
may fail to converge within 384 iterations.

When convergence is not achieved, the current implementation 
mistakenly returns      . This results in a runtime panic in almost all 
relevant pool operations due to a division by zero error. The only 
exception is withdrawing liquidity, which is correctly handled.

In this state, users would encounter a divide by zero error without
understanding the cause, potentially causing panic among the 
liquidity providers (LPs).

Description

Recommendation

stableswap-core-v-1-1

# convergence typically occurs in 4 rounds or less, this should be unreachable!
#
   if it does happen the pool is borked and LPs can withdraw via `remove_liquidity`
raise

D

0

withdraw-liquidity

withdraw-liquidity

(response UnknownType uint)

fold-d-for-loop

get-d



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

28

Ensure consistency in the calculation and application of fees when 
updating pool balances and computing the D value.

Specifically, ensure that:

•	 The			               in		      does not 
include the protocol fee but does include the provider fee.

•	 The			               in		      does not 
include the protocol fee but does include the provider fee.

[L-11] Incorrect D Value Stored in Pool

In the		             and		         functions, after a swap 
is executed, the X and Y tokens are stored in the		    pool 
along with the D invariant value.

For instance, in the		          function, the	             value, 
which determines the new D, is calculated based on 
			             and				     . The 	
			             considers the existing X balance plus 
the deposited X amount minus all fees (both protocol and provider 
fees).

However, when updating the pool balances, the X balance used 
excludes only the protocol fees, not the provider fees, as provider 
fees continue to form liquidity and are effectively reinvested.

As a result, the persisted D value is based on the total X balance 
minus all fees, whereas the actual pool state reflects the X 
balance minus only protocol fees.

This discrepancy causes the D value to be inconsistent with the 
pool’s actual state. Since the D value stored in	            is not 
directly used within the protocol, this issue does not affect the 
swap calculations. However, it may impact any external parties 
or integrators that rely on the D value and the X and Y token 
balances stored in the		          pool.

Description

Recommendation

swap-x-for-y

swap-x-for-y

swap-y-for-x

swap-x-for-y updated-d

swap-y-for-x

updated-x-balance-scaled

updated-x-balance-scaled

updated-y-balance-scaled

updated-x-balance-scaled

updated-y-balance-scaled

pool-trait

pool-trait

pool-trait



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

29

@@ -533,7 +533,7 @@

(x-amount-fees-provider-scaled (/ (* x-amount-scaled provider-fee) BPS_1))

(x-amount-fees-total-scaled

  (+ x-amount-fees-protocol-scaled x-amount-fees-provider-scaled))

(dx-scaled (- x-amount-scaled x-amount-fees-total-scaled))

- 	 (updated-x-balance-scaled (+ x-balance-scaled dx-scaled))

+ 	 (updated-x-balance-scaled (+

+ (+ x-balance-scaled dx-scaled) x-amount-fees-provider-scaled))

(updated-y-balance-scaled (get-y dx-scaled x-balance-scaled y-balance-scaled

  (* amplification-coefficient BPS_3) convergence-threshold))

(updated-y-balance (get y-amount

  (scale-down-amounts u0 updated-y-balance-scaled x-token-trait y-token-trait)))

(dy (- y-balance updated-y-balance))

@@ -607,7 +607,7 @@

(y-amount-fees-provider-scaled (/ (* y-amount-scaled provider-fee) BPS_1))

(y-amount-fees-total-scaled

  (+ y-amount-fees-protocol-scaled y-amount-fees-provider-scaled))

(dy-scaled (- y-amount-scaled y-amount-fees-total-scaled))

- 	 (updated-y-balance-scaled (+ y-balance-scaled dy-scaled))

+ 	 (updated-y-balance-scaled (+

+ (+ y-balance-scaled dy-scaled) y-amount-fees-provider-scaled))

(updated-x-balance-scaled (get-x dy-scaled y-balance-scaled x-balance-scaled

  (* amplification-coefficient BPS_3) convergence-threshold))

(updated-x-balance (get x-amount

  (scale-down-amounts updated-x-balance-scaled u0 x-token-trait y-token-trait)))

(dx (- x-balance updated-x-balance))



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

30

Throughout the codebase, fees are divided into two categories:

•	 Provider fee: This fee is taken on swaps and left in the pool to 
be distributed among liquidity providers.

•	 Protocol fee: This fee is taken on swaps and when adding 
liquidity, and it is sent to a		           .

The fee referred to as the “protocol fee” is actually sent to a fee 
address that is set per pool.

While pool creation is limited to admins only, the admins can 
choose a fee address specific to the protocol team, which will 
provide protocol incentives.

However, once pool creation is made available to the general 
public, both the fee amount and its receiver can be specified at 
the time of creation by the pool deployer. As a result, the protocol 
team itself may not receive any fees at that point.

Note that while the initial fee schedule is chosen by the 
pool creator, trusted admins can change it unilaterally after 
deployment. However, doing this on non-protocol pools would be 
considered a highly controversial action.

8.5. QA Findings

[QA-01] Protocol Fee Irregularities

Description

fee-address

If the aforementioned behavior is intended, acknowledge this issue.

Otherwise, implement the following changes:

Do not allow the protocol fees, liquidation fees (if intended to be 
sent to the protocol), or the fee receiver principle to be changeable 
at pool creation, only through admin action. This way, when public 
pool creation is allowed, all pools should default to actual protocol 
values to ensure the team has a steady revenue stream.

Recommendation



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

31

[QA-02] Simplification of the remove-admin
Function

The		           function can be streamlined by eliminating 
two redundant	         declarations for variables that are used only 
once:		                and			             	  . By
removing these          declarations and directly attributing values, 
as done in previous admin-guarded functions, we can achieve 
both uniformity and a slight optimization in fees.

This optimization can be applied throughout the codebase 
contracts.

Eliminate the			   and
variables from the		         function and replace their 
usage with direct value attribution.

Example:

Description

Recommendation

remove-admin

remove-admin

caller-in-list

caller-in-list admin-to-remove-in-list

let

let

admin-to-remove-in-list

(define-public (remove-admin (admin principal))

   (let (

	 (admins-list (var-get admins))

- 	 (caller-in-list (index-of admins-list tx-sender))

- 	 (admin-to-remove-in-list (index-of admins-list admin))

	 (caller tx-sender)

   )

- 	 (asserts! (is-some caller-in-list) ERR_NOT_AUTHORIZED)

- 	 (asserts! (is-some admin-to-remove-in-list) ERR_ADMIN_NOT_IN_LIST)

+ 	 (asserts! (is-some (index-of admins-list caller)) ERR_NOT_AUTHORIZED)

+ 	 (asserts! (is-some (index-of admins-list admin)) ERR_ADMIN_NOT_IN_LIST)

	 (asserts! (not

	    (is-eq admin CONTRACT_DEPLOYER)) ERR_CANNOT_REMOVE_CONTRACT_DEPLOYER)

	 (var-set admin-helper admin)

	 (var-set admins (filter admin-not-removeable admins-list))



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

32

Replace the	     parameter with				    in the
	 , 	 , and 	          functions. Additionally, incorporate the 	
	 multiplication within these functions.

[QA-03] Use amplification-coefficient
instead of ann in public functions

The 	        , 	         , and	     functions in the core contract 
currently receive an	      parameter. This parameter is 
consistently the product of the			             and 
the	        constant:

This approach is redundant since there are no calls to these 
functions without this multiplication. Additionally, it may cause 
confusion for integrators, as Curve’s original Stableswap 
implementation uses the	   parameter to represent the 
amplification coefficient directly when calculating the D variable.
In contrast, the current implementation requires the value to be 
multiplied by a factor before being passed to the public function.

To improve clarity and prevent confusion among integrators and 
technical users of the contract, it is recommended to use 		
			            as a parameter for these functions.

Description

Recommendation

get-d

get-d get-x get-y

BPS_3

get-x get-y

BPS_3

amplification-coefficient

amplification-coefficient

amplification-coefficient

ann

ann

_amp

(* amplification-coefficient BPS_3)



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

33

In the			   function, modify the
check to match the implementation used in the
function.

[QA-04] Use Consistent Amount
Invalidation Logic in LP Operations

In the core contract, when adding liquidity, the amounts of X and Y 
tokens (after fees) are verified to ensure that at least one of them 
is greater than zero using the following check:

However, when withdrawing liquidity, the same validation is 
performed using a different approach:

The use of two different mechanisms for the same validation 
reduces code uniformity, and the first check involves more 
operations than necessary.

Description

Recommendation
add-liquidity

withdraw-liquidity

ERR_INVALID_AMOUNT

(asserts! (or (> updated-x-amount u0)

  (> updated-y-amount u0)) ERR_INVALID_AMOUNT)

(asserts! (> (+ x-amount y-amount) u0) ERR_INVALID_AMOUNT)

https://github.com/Clarity-Alliance/bitflow-stableswap-engagement/blob/e949a74b25bbe280708685cd7b40aa1b756166d1/contracts/stableswap-core-v-1-1.clar#L719
https://github.com/Clarity-Alliance/bitflow-stableswap-engagement/blob/e949a74b25bbe280708685cd7b40aa1b756166d1/contracts/stableswap-core-v-1-1.clar#L792
https://github.com/Clarity-Alliance/bitflow-stableswap-engagement/blob/e949a74b25bbe280708685cd7b40aa1b756166d1/contracts/stableswap-core-v-1-1.clar#L792


Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

34

Given that the Clarity VM supports a maximum call stack depth of 
only 64, which may be insufficient for implementing a recursive 
solution that can also handle heavily unbalanced pools, we 
recommend reducing the number of iterations to 255.

[QA-05] Inefficient Iterative Calculations

The				    contract utilizes inefficient iterative
calculations, potentially leading to unnecessarily high transaction 
costs.

Currently, the implementation employs Clarity’s	    function 
with a fixed list of 384 items for these calculations:

This method is inefficient because the 	  operation continues 
even if converged values are found early in the process, which 
could result in higher transaction costs for users interacting with 
the contract.

For context, the original Curve implementation uses a           loop 
with a maximum of 255 iterations and includes an early return 
mechanism, resulting in a more optimal solution. However, Clarity, 
being a pure functional language, does not support	        loops, 
making it challenging to directly replicate this approach.

Description

Recommendation

fold

fold

for

for

.stableswap-core-v-1-1

lisp (define-constant index-list (list u1 u2 ... u384))



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

35

Simplify both the		       and		     functions by
calculating the 			          and
updated-x-balance-scaled variables without calling		  .	    .

Example for	            :

[QA-06] Redundant Third Call to 
			      in Liquidity Operation

In the			   and	            functions of the
	          contract, there is a third call to the 
function to calculate the updated, scaled X and Y token values:

This third call, which also involves two additional external calls to 
the tokens’		         SIP-10 function, is unnecessary. The 
scaled updated balances can be directly obtained by adding the 	
		       to the		              variables.

Description

Recommendation

add-liquidity

add-liquidity

updated-y-balance-scaled

scale-up-amounts

updated-x-balance-scaled

get-decimals

*-amount-scaled *-balance-scaled

scale-up-amounts

get-dlp

get-dlp

get-dlp

stableswap-

core-v-1-1

scale-up-amounts

(updated-pool-balances-scaled

  (scale-up-amounts updated-x-balance updated-y-balance x-token-trait y-token-trait))

(updated-x-balance-scaled (get x-amount updated-pool-balances-scaled))

(updated-y-balance-scaled (get y-amount updated-pool-balances-scaled))

(amplification-coefficient (get amplification-coefficient pool-data))

- 	 (updated-x-balance (+ x-balance x-amount))

- 	 (updated-y-balance (+ y-balance y-amount))

	 (amounts-added-scaled

	   (scale-up-amounts x-amount y-amount x-token-trait y-token-trait))

	 (x-amount-scaled (get x-amount amounts-added-scaled))

	 (y-amount-scaled (get y-amount amounts-added-scaled))

	 (pool-balances-scaled

	   (scale-up-amounts x-balance y-balance x-token-trait y-token-trait))

	 (x-balance-scaled (get x-amount pool-balances-scaled))

	 (y-balance-scaled (get y-amount pool-balances-scaled))

- 	 (updated-pool-balances-scaled

- (scale-up-amounts updated-x-balance updated-y-balance x-token-trait y-token-trait))

- 	 (updated-x-balance-scaled (get x-amount updated-pool-balances-scaled))

- 	 (updated-y-balance-scaled (get y-amount updated-pool-balances-scaled))

+ 	 (updated-x-balance-scaled (+ x-amount-scaled x-balance-scaled))

+ 	 (updated-y-balance-scaled (+ y-amount-scaled y-balance-scaled))

	 (d-a (get-d x-balance-scaled y-balance-scaled

	   (* amplification-coefficient BPS_3) convergence-threshold))

	 (d-b (get-d updated-x-balance-scaled updated-y-balance-scaled

	   (* amplification-coefficient BPS_3) convergence-threshold))



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

36

If the protocol is expected to handle tokens with a large number 
of decimals, consider implementing multi-precision arithmetic. 
Although Clarity does not currently support multi-precision 
arithmetic, it can be adapted from other languages. For instance, 
use two 	 variables to represent 256-bit numbers and 
implement the necessary overflow and carry logic. This approach 
would only require changes to internal representations, without 
needing to modify external APIs or interfaces.

[QA-07] Potential Integer Overflow in D
Calculation with High Precision Tokens

In the StableSwap core contract (				          ),
the calculation of the invariant	      is vulnerable to integer overflow 
when dealing with tokens that have a large number of decimals:

For example, consider a pool consisting of	         (imaginary 
Stacks Bridged ETH) and	          (imaginary Stacks Bridged 
stETH), both of which are SIP-010 tokens with          decimals. 
This pool contains		  and		      , representing 
approximately $0.5 million in liquidity. The result of the above 
calculation is						                 ,
a 133-bit number. However, the contract uses	 , a 128-bit 
integer data type, which will result in an overflow. This overflow 
disrupts the D invariant calculation and compromises the pool’s 
stability.

Description

Recommendation

D

sbETH

uint

uint

u18

100 sbETH 100 sbstETH

sbstETH

(new-d-partial (> (* current-d new-d-partial-x) (* BPS_3 current-y-balance)))

stableswap-core-v-1-1.clar

10000000000000000000000000000000000000000



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

37

Add comprehensive comments similar to those in the initial 
implementation version and remove the outdated comments 
mentioned above.

[QA-08] Maintain Proper Codebase
Comments

The				    contract is a newer version of 
the previous Bitflow Stableswap implementation. However, the 
previous version is significantly better commented.

Here are some examples of comments that can be adapted and 
incorporated into the new version:	  ,        ,       ,        ,       ,        ,
       ,        , and	       .

Additionally, in the current version of the protocol, there are some 
outdated comments that should be removed:

•	 	 : should we mint minimum share to pool contract like xyk 
core? 
The shares are already correctly minted.

•	 	 : ability to enable/disable single sided liquidity? 
This comment is irrelevant as it pertains to an internal feature 
discussion.

•	 	 : fee-address or protocol-address? 
This comment is also irrelevant as it pertains to an internal 
feature discussion.

Description

Recommendation

[1]

[1]

[2]

[3]

[7]

[2]

[8]

[3]

[9]

[4] [5] [6]

stableswap-core-v-1-1

https://github.com/BitflowFinance/bitflow/blob/main/contracts/stableswap.clar
https://github.com/Clarity-Alliance/bitflow-stableswap-engagement/blob/main/contracts/stableswap-core-v-1-1.clar#L479


Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

38

Remove the	         code blocks from the entire codebase and 
integrate the inner logic directly after the	   variable declarations.

[QA-09] Remove Redundant Begin Blocks

Throughout the codebase, after	 declarations, there 
are unnecessary	    blocks added instead of directly writing 
the subsequent statements, which is normally allowed by the	
block. This redundancy is present in almost all contracts, and all 
instances of these	       code blocks can be removed.

Description

Recommendation

let

let

let

begin

begin

begin



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

39

Adopt more descriptive constant names that clearly convey the 
semantics and intent of each constant.

[QA-10] Non-descriptive BPS Constant
Names

The			              contract employs constants named 	
	 , 	  , etc., which do not provide descriptive names that 
convey their purpose or functionality.

This lack of descriptive naming conventions makes the code 
challenging to understand and maintain, potentially leading 
to misunderstandings or errors during development and 
maintenance.

Description

Recommendation

stableswap-core-v-1-1

BPS_1 BPS_2



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

40

To avoid confusion and improve clarity, rename all variables 
containing 	   to	 . This will accurately reflect the variable’s 
meaning as	    , improving the readability and maintainability of the 
codebase.

[QA-11] Misleading	         Variable Name

The use of	    as a standalone variable name or as part of 
other variables throughout the contract is misleading because it 
represents	    rather than	          . This naming likely 
originates from the          variable in Curve’s original StableSwap 
implementation. However, this could cause confusion because
does not reflect the definition of	     as presented in the 
original StableSwap whitepaper.

In Curve’s implementation, the variable          actually represents 
	       (as explained in this Curve research paper). While 
this naming convention makes sense in Curve’s context, where 
the model supports an arbitrary number of tokens (represented 
by      ), in Bitflow’s StableSwap implementation, n is fixed at      . 
Consequently,	          effectively represents
		      .

This discrepancy between the notation and its actual 
representation can lead to misunderstandings and confusion 
among developers and security researchers.

Description

Recommendation

ann

ann A*n^(n-1) = A*n^(2-1)

= A*n^1 = A * n

n 2

ann

ann an

A*n^n

A*n^(n-1)

A*n^n

A*n

A*n

Ann

Ann

ann

https://github.com/curvefi/curve-stablecoin/blob/202c75b115d44c1b961eab57fb13d8ae4ccaa050/contracts/Stableswap.vy#L404C5-L404C8
https://github.com/curvefi/curve-stablecoin/blob/202c75b115d44c1b961eab57fb13d8ae4ccaa050/contracts/Stableswap.vy#L404C5-L404C8
https://berkeley-defi.github.io/assets/material/StableSwap.pdf
https://berkeley-defi.github.io/assets/material/StableSwap.pdf
https://github.com/curveresearch/notes/blob/main/stableswap.pdf


Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

41

Rename the			         function to			         .

[QA-12] Rename withdraw-liquidity to
remove-liquidity

From a contextual standpoint, adding liquidity to the pool is 
performed through the		         	    function, not via a 
		           function. However, removing liquidity from a 
pool is currently executed using the			          function, 
which is not the direct opposite of adding but rather of depositing.

This inconsistency creates a lack of uniformity and introduces 
ambiguity, as the term			  is typically associated with 
depositing and borrowing/lending activities, not with liquidity 
provision.

Description

Recommendation

add-liquidity

withdrawing

deposit-liquidity

withdraw-liquidity

withdraw-liquidity remove-liquidity



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

42

Convert all instances of whitespace characters to tabs for 
indentation.

[QA-13] Use Tabs Instead of Spaces

For Clarity smart contracts, minimizing code size is crucial. Using 
tabs instead of spaces for indentation can help reduce code size 
while maintaining readability.

Spaces increase the code size because each space character 
occupies 1 byte of storage. In contrast, a tab, which can visually 
represent any number of spaces (commonly 2 or 4), occupies only 
1 byte. Therefore, using tabs instead of spaces can significantly 
reduce storage requirements. For example, a 2-space indent 
visually appears the same as a tab but requires 2 bytes, doubling 
the storage space needed compared to a tab.

Description

Recommendation



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

43

To enhance code readability, a constant	          should be created 
and used in place of the	           response.

[QA-14] Use a SUCCESS Constant

Throughout the codebase, there are instances where the 
response	            is returned. In all these cases, this response 
indicates that the function call was successful, rather than serving 
as a contextual flag (e.g., it is not used in functions with names 
like	      ).

Description

Recommendation

(ok true)

SUCCESS

(ok true)

is-*



Security Review

Bitflow
Stableswap

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About Bitflow Stableswap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings
8.1. Critical Findings

[C-01] Vulnerability in Pool Configuration When 
Public Pool Creation is Enabled

8.2. High Findings
[H-01] Liquidity Fee Cannot Be Updated After Pool 
Creation
[H-02] The Fee Schedule is Malfunctioning

8.3. Medium Findings
[M-01] Pool Creation Vulnerable to Front-Running 
When Public Pool Creation is Enabled
[M-02] Stableswap STX-stSTX Pools are not SIP-10 
Compliant

8.4. Low Findings
[L-01] Fees are Incorrectly Applied to the Input 
Amount on Swaps
[L-02] Convergence Threshold Cannot Be Set at 
Pool Creation
[L-03] Pools with an Invalid Fee Structure Can Be 
Created
[L-04] Pool Validity Check Not Reached for Invalid 
Pools
[L-05] Pool Symbol and Name Formation Logic Can 
Cause DoS in Pool Creation
[L-06] Missing Deadline On Swaps
[L-07] Minimum D Value Check on Invalid Liquidity 
Operations is Never Reached
[L-08] Avoid Using tx-sender for Caller Identification
[L-09] MINIMUM_SHARES Enforcement May Lead 
to Liquidity Losses
[L-10] Lack of Proper Error Handling on Conver-
gence Failure
[L-11] Incorrect D Value Stored in Pool

8.5. QA Findings
[QA-01] Protocol Fee Irregularities
[QA-02] Simplification of the remove-admin 
Function
[QA-03] Use amplification-coefficient instead of ann 
in public functions
[QA-04] Use Consistent Amount Invalidation Logic 
in LP Operationst
[QA-05] Inefficient Iterative Calculations
[QA-06] Redundant Third Call to scale-up-amounts 
in Liquidity Operation
[QA-07] Potential Integer Overflow in D Calculation 
with High Precision Tokens
[QA-08] Maintain Proper Codebase Comments
[QA-09] Remove Redundant Begin Blocks
[QA-10] Non-descriptive BPS Constant Names
[QA-11] Misleading ann Variable Name
[QA-12] Rename withdraw-liquidity to                       
remove-liquidity
[QA-13] Use Tabs Instead of Spaces
[QA-14] Use a SUCCESS Constant
[QA-15] Typographical Error

2
3
4
4
4
4
5
5
6
7
7
10
10

12
12

13
14
14

16

17
17

19

20

21

22

23
24

25
26

27

28
30
30
31

32

33

34
35

36

37
38
39
40
41

42
43
44

44

Correct the typo in all relevant contracts within the codebase.

[QA-15] Typographical Error

Throughout the codebase, the duplicated
private function contains a typographical error. The word
should be corrected to		         .

Description

Recommendation

admin-not-removeable

removeable

removable


